No Arabic abstract
Introduction of spectrum-sharing in 5G and subsequent generation networks demand base-station(s) with the capability to characterize the wideband spectrum spanned over licensed, shared and unlicensed non-contiguous frequency bands. Spectrum characterization involves the identification of vacant bands along with center frequency and parameters (energy, modulation, etc.) of occupied bands. Such characterization at Nyquist sampling is area and power-hungry due to the need for high-speed digitization. Though sub-Nyquist sampling (SNS) offers an excellent alternative when the spectrum is sparse, it suffers from poor performance at low signal to noise ratio (SNR) and demands careful design and integration of digital reconstruction, tunable channelizer and characterization algorithms. In this paper, we propose a novel deep-learning framework via a single unified pipeline to accomplish two tasks: 1)~Reconstruct the signal directly from sub-Nyquist samples, and 2)~Wideband spectrum characterization. The proposed approach eliminates the need for complex signal conditioning between reconstruction and characterization and does not need complex tunable channelizers. We extensively compare the performance of our framework for a wide range of modulation schemes, SNR and channel conditions. We show that the proposed framework outperforms existing SNS based approaches and characterization performance approaches to Nyquist sampling-based framework with an increase in SNR. Easy to design and integrate along with a single unified deep learning framework make the proposed architecture a good candidate for reconfigurable platforms.
We present a mixed analog-digital spectrum sensing method that is especially suited to the typical wideband setting of cognitive radio (CR). The advantages of our system with respect to current architectures are threefold. First, our analog front-end is fixed and does not involve scanning hardware. Second, both the analog-to-digital conversion (ADC) and the digital signal processing (DSP) rates are substantially below Nyquist. Finally, the sensing resources are shared with the reception path of the CR, so that the lowrate streaming samples can be used for communication purposes of the device, besides the sensing functionality they provide. Combining these advantages leads to a real time map of the spectrum with minimal use of mobile resources. Our approach is based on the modulated wideband converter (MWC) system, which samples sparse wideband inputs at sub-Nyquist rates. We report on results of hardware experiments, conducted on an MWC prototype circuit, which affirm fast and accurate spectrum sensing in parallel to CR communication.
Cognitive radio (CR) is a promising technology enabling efficient utilization of the spectrum resource for future wireless systems. As future CR networks are envisioned to operate over a wide frequency range, advanced wideband spectrum sensing (WBSS) capable of quickly and reliably detecting idle spectrum bands across a wide frequency span is essential. In this article, we provide an overview of recent advances on sub-Nyquist sampling-based WBSS techniques, including compressed sensing-based methods and compressive covariance sensing-based methods. An elaborate discussion of the pros and cons of each approach is presented, along with some challenging issues for future research. A comparative study suggests that the compressive covariance sensing-based approach offers a more competitive solution for reliable real-time WBSS.
Deep learning methods achieve great success in many areas due to their powerful feature extraction capabilities and end-to-end training mechanism, and recently they are also introduced for radio signal modulation classification. In this paper, we propose a novel deep learning framework called SigNet, where a signal-to-matrix (S2M) operator is adopted to convert the original signal into a square matrix first and is co-trained with a follow-up CNN architecture for classification. This model is further accelerated by integrating 1D convolution operators, leading to the upgraded model SigNet2.0. The experiments on two signal datasets show that both SigNet and SigNet2.0 outperform a number of well-known baselines, achieving the state-of-the-art performance. Notably, they obtain significantly higher accuracy than 1D-ResNet and 2D-CNN (at most increasing 70.5%), while much faster than LSTM (at most saving 88.0% training time). More interestingly, our proposed models behave extremely well in few-shot learning when a small training data set is provided. They can achieve a relatively high accuracy even when 1% training data are kept, while other baseline models may lose their effectiveness much more quickly as the datasets get smaller. Such result suggests that SigNet/SigNet2.0 could be extremely useful in the situations where labeled signal data are difficult to obtain.
Spectrum sensing is a key technology for cognitive radios. We present spectrum sensing as a classification problem and propose a sensing method based on deep learning classification. We normalize the received signal power to overcome the effects of noise power uncertainty. We train the model with as many types of signals as possible as well as noise data to enable the trained network model to adapt to untrained new signals. We also use transfer learning strategies to improve the performance for real-world signals. Extensive experiments are conducted to evaluate the performance of this method. The simulation results show that the proposed method performs better than two traditional spectrum sensing methods, i.e., maximum-minimum eigenvalue ratio-based method and frequency domain entropy-based method. In addition, the experimental results of the new untrained signal types show that our method can adapt to the detection of these new signals. Furthermore, the real-world signal detection experiment results show that the detection performance can be further improved by transfer learning. Finally, experiments under colored noise show that our proposed method has superior detection performance under colored noise, while the traditional methods have a significant performance degradation, which further validate the superiority of our method.
Faster-than-Nyquist (FTN) is a promising paradigm to improve bandwidth utilization at the expense of additional intersymbol interference (ISI). In this paper, we apply state-of-the-art deep learning (DL) technology into receiver design for FTN signaling and propose two DL-based new architectures. Firstly, we propose an FTN signal detection based on DL and connect it with the successive interference cancellation (SIC) to replace traditional detection algorithms. Simulation results show that this architecture can achieve near-optimal performance in both uncoded and coded scenarios. Additionally, we propose a DL-based joint signal detection and decoding for FTN signaling to replace the complete baseband part in traditional FTN receivers. The performance of this new architecture has also been illustrated by simulation results. Finally, both the proposed DL-based receiver architecture has the robustness to signal to noise ratio (SNR). In a nutshell, DL has been proved to be a powerful tool for the FTN receiver design.