No Arabic abstract
This work shows how to improve and interpret the commonly used dual encoder model for response suggestion in dialogue. We present an attentive dual encoder model that includes an attention mechanism on top of the extracted word-level features from two encoders, one for context and one for label respectively. To improve the interpretability in the dual encoder models, we design a novel regularization loss to minimize the mutual information between unimportant words and desired labels, in addition to the original attention method, so that important words are emphasized while unimportant words are de-emphasized. This can help not only with model interpretability, but can also further improve model accuracy. We propose an approximation method that uses a neural network to calculate the mutual information. Furthermore, by adding a residual layer between raw word embeddings and the final encoded context feature, word-level interpretability is preserved at the final prediction of the model. We compare the proposed model with existing methods for the dialogue response task on two public datasets (Persona and Ubuntu). The experiments demonstrate the effectiveness of the proposed model in terms of better Recall@1 accuracy and visualized interpretability.
Although deep learning models have brought tremendous advancements to the field of open-domain dialogue response generation, recent research results have revealed that the trained models have undesirable generation behaviors, such as malicious responses and generic (boring) responses. In this work, we propose a framework named Negative Training to minimize such behaviors. Given a trained model, the framework will first find generated samples that exhibit the undesirable behavior, and then use them to feed negative training signals for fine-tuning the model. Our experiments show that negative training can significantly reduce the hit rate of malicious responses, or discourage frequent responses and improve response diversity.
Having engaging and informative conversations with users is the utmost goal for open-domain conversational systems. Recent advances in transformer-based language models and their applications to dialogue systems have succeeded to generate fluent and human-like responses. However, they still lack control over the generation process towards producing contentful responses and achieving engaging conversations. To achieve this goal, we present textbf{DiSCoL} (textbf{Di}alogue textbf{S}ystems through textbf{Co}versational textbf{L}ine guided response generation). DiSCoL is an open-domain dialogue system that leverages conversational lines (briefly textbf{convlines}) as controllable and informative content-planning elements to guide the generation model produce engaging and informative responses. Two primary modules in DiSCoLs pipeline are conditional generators trained for 1) predicting relevant and informative convlines for dialogue contexts and 2) generating high-quality responses conditioned on the predicted convlines. Users can also change the returned convlines to textit{control} the direction of the conversations towards topics that are more interesting for them. Through automatic and human evaluations, we demonstrate the efficiency of the convlines in producing engaging conversations.
Predicting the next utterance in dialogue is contingent on encoding of users input text to generate appropriate and relevant response in data-driven approaches. Although the semantic and syntactic quality of the language generated is evaluated, more often than not, the encoded representation of input is not evaluated. As the representation of the encoder is essential for predicting the appropriate response, evaluation of encoder representation is a challenging yet important problem. In this work, we showcase evaluating the text generated through human or automatic metrics is not sufficient to appropriately evaluate soundness of the language understanding of dialogue models and, to that end, propose a set of probe tasks to evaluate encoder representation of different language encoders commonly used in dialogue models. From experiments, we observe that some of the probe tasks are easier and some are harder for even sophisticated model architectures to learn. And, through experiments we observe that RNN based architectures have lower performance on automatic metrics on text generation than transformer model but perform better than the transformer model on the probe tasks indicating that RNNs might preserve task information better than the Transformers.
In open-domain dialogue systems, generative approaches have attracted much attention for response generation. However, existing methods are heavily plagued by generating safe responses and unnatural responses. To alleviate these two problems, we propose a novel framework named Dual Adversarial Learning (DAL) for high-quality response generation. DAL is the first work to innovatively utilizes the duality between query generation and response generation to avoid safe responses and increase the diversity of the generated responses. Additionally, DAL uses adversarial learning to mimic human judges and guides the system to generate natural responses. Experimental results demonstrate that DAL effectively improves both diversity and overall quality of the generated responses. DAL outperforms the state-of-the-art methods regarding automatic metrics and human evaluations.
Scarcity of training data for task-oriented dialogue systems is a well known problem that is usually tackled with costly and time-consuming manual data annotation. An alternative solution is to rely on automatic text generation which, although less accurate than human supervision, has the advantage of being cheap and fast. In this paper we propose a novel controlled data generation method that could be used as a training augmentation framework for closed-domain dialogue. Our contribution is twofold. First we show how to optimally train and control the generation of intent-specific sentences using a conditional variational autoencoder. Then we introduce a novel protocol called query transfer that allows to leverage a broad, unlabelled dataset to extract relevant information. Comparison with two different baselines shows that our method, in the appropriate regime, consistently improves the diversity of the generated queries without compromising their quality.