Do you want to publish a course? Click here

DiSCoL: Toward Engaging Dialogue Systems through Conversational Line Guided Response Generation

264   0   0.0 ( 0 )
 Added by Sarik Ghazarian
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Having engaging and informative conversations with users is the utmost goal for open-domain conversational systems. Recent advances in transformer-based language models and their applications to dialogue systems have succeeded to generate fluent and human-like responses. However, they still lack control over the generation process towards producing contentful responses and achieving engaging conversations. To achieve this goal, we present textbf{DiSCoL} (textbf{Di}alogue textbf{S}ystems through textbf{Co}versational textbf{L}ine guided response generation). DiSCoL is an open-domain dialogue system that leverages conversational lines (briefly textbf{convlines}) as controllable and informative content-planning elements to guide the generation model produce engaging and informative responses. Two primary modules in DiSCoLs pipeline are conditional generators trained for 1) predicting relevant and informative convlines for dialogue contexts and 2) generating high-quality responses conditioned on the predicted convlines. Users can also change the returned convlines to textit{control} the direction of the conversations towards topics that are more interesting for them. Through automatic and human evaluations, we demonstrate the efficiency of the convlines in producing engaging conversations.



rate research

Read More

81 - Deng Cai , Yan Wang , Victoria Bi 2018
For dialogue response generation, traditional generative models generate responses solely from input queries. Such models rely on insufficient information for generating a specific response since a certain query could be answered in multiple ways. Consequentially, those models tend to output generic and dull responses, impeding the generation of informative utterances. Recently, researchers have attempted to fill the information gap by exploiting information retrieval techniques. When generating a response for a current query, similar dialogues retrieved from the entire training data are considered as an additional knowledge source. While this may harvest massive information, the generative models could be overwhelmed, leading to undesirable performance. In this paper, we propose a new framework which exploits retrieval results via a skeleton-then-response paradigm. At first, a skeleton is generated by revising the retrieved responses. Then, a novel generative model uses both the generated skeleton and the original query for response generation. Experimental results show that our approaches significantly improve the diversity and informativeness of the generated responses.
Existing methods for Dialogue Response Generation (DRG) in Task-oriented Dialogue Systems (TDSs) can be grouped into two categories: template-based and corpus-based. The former prepare a collection of response templates in advance and fill the slots with system actions to produce system responses at runtime. The latter generate system responses token by token by taking system actions into account. While template-based DRG provides high precision and highly predictable responses, they usually lack in terms of generating diverse and natural responses when compared to (neural) corpus-based approaches. Conversely, while corpus-based DRG methods are able to generate natural responses, we cannot guarantee their precision or predictability. Moreover, the diversity of responses produced by todays corpus-based DRG methods is still limited. We propose to combine the merits of template-based and corpus-based DRGs by introducing a prototype-based, paraphrasing neural network, called P2-Net, which aims to enhance quality of the responses in terms of both precision and diversity. Instead of generating a response from scratch, P2-Net generates system responses by paraphrasing template-based responses. To guarantee the precision of responses, P2-Net learns to separate a response into its semantics, context influence, and paraphrasing noise, and to keep the semantics unchanged during paraphrasing. To introduce diversity, P2-Net randomly samples previous conversational utterances as prototypes, from which the model can then extract speaking style information. We conduct extensive experiments on the MultiWOZ dataset with both automatic and human evaluations. The results show that P2-Net achieves a significant improvement in diversity while preserving the semantics of responses.
Identifying relevant knowledge to be used in conversational systems that are grounded in long documents is critical to effective response generation. We introduce a knowledge identification model that leverages the document structure to provide dialogue-contextualized passage encodings and better locate knowledge relevant to the conversation. An auxiliary loss captures the history of dialogue-document connections. We demonstrate the effectiveness of our model on two document-grounded conversational datasets and provide analyses showing generalization to unseen documents and long dialogue contexts.
In comparison to the interpretation of classification models, the explanation of sequence generation models is also an important problem, however it has seen little attention. In this work, we study model-agnostic explanations of a representative text generation task -- dialogue response generation. Dialog response generation is challenging with its open-ended sentences and multiple acceptable responses. To gain insights into the reasoning process of a generation model, we propose anew method, local explanation of response generation (LERG) that regards the explanations as the mutual interaction of segments in input and output sentences. LERG views the sequence prediction as uncertainty estimation of a human response and then creates explanations by perturbing the input and calculating the certainty change over the human response. We show that LERG adheres to desired properties of explanations for text generation including unbiased approximation, consistency and cause identification. Empirically, our results show that our method consistently improves other widely used methods on proposed automatic- and human- evaluation metrics for this new task by 4.4-12.8%. Our analysis demonstrates that LERG can extract both explicit and implicit relations between input and output segments.
Question answering (QA) is an important aspect of open-domain conversational agents, garnering specific research focus in the conversational QA (ConvQA) subtask. One notable limitation of recent ConvQA efforts is the response being answer span extraction from the target corpus, thus ignoring the natural language generation (NLG) aspect of high-quality conversational agents. In this work, we propose a method for situating QA responses within a SEQ2SEQ NLG approach to generate fluent grammatical answer responses while maintaining correctness. From a technical perspective, we use data augmentation to generate training data for an end-to-end system. Specifically, we develop Syntactic Transformations (STs) to produce question-specific candidate answer responses and rank them using a BERT-based classifier (Devlin et al., 2019). Human evaluation on SQuAD 2.0 data (Rajpurkar et al., 2018) demonstrate that the proposed model outperforms baseline CoQA and QuAC models in generating conversational responses. We further show our models scalability by conducting tests on the CoQA dataset. The code and data are available at https://github.com/abaheti95/QADialogSystem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا