Do you want to publish a course? Click here

DAL: Dual Adversarial Learning for Dialogue Generation

186   0   0.0 ( 0 )
 Added by Shaobo Cui
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In open-domain dialogue systems, generative approaches have attracted much attention for response generation. However, existing methods are heavily plagued by generating safe responses and unnatural responses. To alleviate these two problems, we propose a novel framework named Dual Adversarial Learning (DAL) for high-quality response generation. DAL is the first work to innovatively utilizes the duality between query generation and response generation to avoid safe responses and increase the diversity of the generated responses. Additionally, DAL uses adversarial learning to mimic human judges and guides the system to generate natural responses. Experimental results demonstrate that DAL effectively improves both diversity and overall quality of the generated responses. DAL outperforms the state-of-the-art methods regarding automatic metrics and human evaluations.



rate research

Read More

Dialogue systems play an increasingly important role in various aspects of our daily life. It is evident from recent research that dialogue systems trained on human conversation data are biased. In particular, they can produce responses that reflect peoples gender prejudice. Many debiasing methods have been developed for various NLP tasks, such as word embedding. However, they are not directly applicable to dialogue systems because they are likely to force dialogue models to generate similar responses for different genders. This greatly degrades the diversity of the generated responses and immensely hurts the performance of the dialogue models. In this paper, we propose a novel adversarial learning framework Debiased-Chat to train dialogue models free from gender bias while keeping their performance. Extensive experiments on two real-world conversation datasets show that our framework significantly reduces gender bias in dialogue models while maintaining the response quality. The implementation of the proposed framework is released.
In this paper, we propose Inverse Adversarial Training (IAT) algorithm for training neural dialogue systems to avoid generic responses and model dialogue history better. In contrast to standard adversarial training algorithms, IAT encourages the model to be sensitive to the perturbation in the dialogue history and therefore learning from perturbations. By giving higher rewards for responses whose output probability reduces more significantly when dialogue history is perturbed, the model is encouraged to generate more diverse and consistent responses. By penalizing the model when generating the same response given perturbed dialogue history, the model is forced to better capture dialogue history and generate more informative responses. Experimental results on two benchmark datasets show that our approach can better model dialogue history and generate more diverse and consistent responses. In addition, we point out a problem of the widely used maximum mutual information (MMI) based methods for improving the diversity of dialogue response generation models and demonstrate it empirically.
Neural dialogue response generation has gained much popularity in recent years. Maximum Likelihood Estimation (MLE) objective is widely adopted in existing dialogue model learning. However, models trained with MLE objective function are plagued by the low-diversity issue when it comes to the open-domain conversational setting. Inspired by the observation that humans not only learn from the positive signals but also benefit from correcting behaviors of undesirable actions, in this work, we introduce contrastive learning into dialogue generation, where the model explicitly perceives the difference between the well-chosen positive and negative utterances. Specifically, we employ a pretrained baseline model as a reference. During contrastive learning, the target dialogue model is trained to give higher conditional probabilities for the positive samples, and lower conditional probabilities for those negative samples, compared to the reference model. To manage the multi-mapping relations prevailed in human conversation, we augment contrastive dialogue learning with group-wise dual sampling. Extensive experimental results show that the proposed group-wise contrastive learning framework is suited for training a wide range of neural dialogue generation models with very favorable performance over the baseline training approaches.
Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.
299 - Qingyang Wu , Lei Li , Zhou Yu 2020
Generative Adversarial Networks (GANs) for text generation have recently received many criticisms, as they perform worse than their MLE counterparts. We suspect previous text GANs inferior performance is due to the lack of a reliable guiding signal in their discriminators. To address this problem, we propose a generative adversarial imitation learning framework for text generation that uses large pre-trained language models to provide more reliable reward guidance. Our approach uses contrastive discriminator, and proximal policy optimization (PPO) to stabilize and improve text generation performance. For evaluation, we conduct experiments on a diverse set of unconditional and conditional text generation tasks. Experimental results show that TextGAIL achieves better performance in terms of both quality and diversity than the MLE baseline. We also validate our intuition that TextGAILs discriminator demonstrates the capability of providing reasonable rewards with an additional task.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا