Do you want to publish a course? Click here

Do Encoder Representations of Generative Dialogue Models Encode Sufficient Information about the Task ?

92   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Predicting the next utterance in dialogue is contingent on encoding of users input text to generate appropriate and relevant response in data-driven approaches. Although the semantic and syntactic quality of the language generated is evaluated, more often than not, the encoded representation of input is not evaluated. As the representation of the encoder is essential for predicting the appropriate response, evaluation of encoder representation is a challenging yet important problem. In this work, we showcase evaluating the text generated through human or automatic metrics is not sufficient to appropriately evaluate soundness of the language understanding of dialogue models and, to that end, propose a set of probe tasks to evaluate encoder representation of different language encoders commonly used in dialogue models. From experiments, we observe that some of the probe tasks are easier and some are harder for even sophisticated model architectures to learn. And, through experiments we observe that RNN based architectures have lower performance on automatic metrics on text generation than transformer model but perform better than the transformer model on the probe tasks indicating that RNNs might preserve task information better than the Transformers.



rate research

Read More

Task-oriented dialogue systems help users accomplish tasks such as booking a movie ticket and ordering food via conversation. Generative models parameterized by a deep neural network are widely used for next turn response generation in such systems. It is natural for users of the system to want to accomplish multiple tasks within the same conversation, but the ability of generative models to compose multiple tasks is not well studied. In this work, we begin by studying the effect of training human-human task-oriented dialogues towards improving the ability to compose multiple tasks on Transformer generative models. To that end, we propose and explore two solutions: (1) creating synthetic multiple task dialogue data for training from human-human single task dialogue and (2) forcing the encoder representation to be invariant to single and multiple task dialogues using an auxiliary loss. The results from our experiments highlight the difficulty of even the sophisticated variant of transformer model in learning to compose multiple tasks from single task dialogues.
This work shows how to improve and interpret the commonly used dual encoder model for response suggestion in dialogue. We present an attentive dual encoder model that includes an attention mechanism on top of the extracted word-level features from two encoders, one for context and one for label respectively. To improve the interpretability in the dual encoder models, we design a novel regularization loss to minimize the mutual information between unimportant words and desired labels, in addition to the original attention method, so that important words are emphasized while unimportant words are de-emphasized. This can help not only with model interpretability, but can also further improve model accuracy. We propose an approximation method that uses a neural network to calculate the mutual information. Furthermore, by adding a residual layer between raw word embeddings and the final encoded context feature, word-level interpretability is preserved at the final prediction of the model. We compare the proposed model with existing methods for the dialogue response task on two public datasets (Persona and Ubuntu). The experiments demonstrate the effectiveness of the proposed model in terms of better Recall@1 accuracy and visualized interpretability.
In contrast to fully connected networks, Convolutional Neural Networks (CNNs) achieve efficiency by learning weights associated with local filters with a finite spatial extent. An implication of this is that a filter may know what it is looking at, but not where it is positioned in the image. Information concerning absolute position is inherently useful, and it is reasonable to assume that deep CNNs may implicitly learn to encode this information if there is a means to do so. In this paper, we test this hypothesis revealing the surprising degree of absolute position information that is encoded in commonly used neural networks. A comprehensive set of experiments show the validity of this hypothesis and shed light on how and where this information is represented while offering clues to where positional information is derived from in deep CNNs.
A significant roadblock in multilingual neural language modeling is the lack of labeled non-English data. One potential method for overcoming this issue is learning cross-lingual text representations that can be used to transfer the performance from training on English tasks to non-English tasks, despite little to no task-specific non-English data. In this paper, we explore a natural setup for learning cross-lingual sentence representations: the dual-encoder. We provide a comprehensive evaluation of our cross-lingual representations on a number of monolingual, cross-lingual, and zero-shot/few-shot learning tasks, and also give an analysis of different learned cross-lingual embedding spaces.
Generating fluent natural language responses from structured semantic representations is a critical step in task-oriented conversational systems. Avenues like the E2E NLG Challenge have encouraged the development of neural approaches, particularly sequence-to-sequence (Seq2Seq) models for this problem. The semantic representations used, however, are often underspecified, which places a higher burden on the generation model for sentence planning, and also limits the extent to which generated responses can be controlled in a live system. In this paper, we (1) propose using tree-structured semantic representations, like those used in traditional rule-based NLG systems, for better discourse-level structuring and sentence-level planning; (2) introduce a challenging dataset using this representation for the weather domain; (3) introduce a constrained decoding approach for Seq2Seq models that leverages this representation to improve semantic correctness; and (4) demonstrate promising results on our dataset and the E2E dataset.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا