No Arabic abstract
Synthesis of crystallographically well-defined thin films of topological materials is important for unraveling their mesoscale quantum properties and for device applications. Mn$_3$Ge, an antiferromagnetic Weyl semimetal with a chiral magnetic structure on a Kagome lattice, is expected to have enhanced Berry curvature around Weyl nodes near the Fermi energy, leading to large anomalous Hall / Nernst effects and a large spin-Hall effect. Using magnetron sputtering, we have grown epitaxial thin films of hexagonal D0$_{19}$ Mn$_3$Ge that are flat and continuous. Large anomalous Nernst and inverse spin-Hall effects are observed in thermoelectric and spin-pumping devices. The anomalous Nernst signal in our Mn$_3$Ge films is estimated to be 0.1 $mu$V / K, and is comparable to that in ferromagnetic Fe, despite Mn$_3$Ge having a weak magnetization of ~3.5 m$mu_B$ at room temperature. The spin mixing conductance is 90.5 nm$^{-2}$ at the Py / Mn$_3$Ge interface, and the spin-Hall angle in Mn$_3$Ge is estimated to be about 8 times of that in Pt.
Ferrimagnetic Mn$_4$N is a promising material for heat flux sensors based on the anomalous Nernst effect (ANE) because of its sizable uniaxial magnetic anisotropy ($K_{rm u}$) and low saturation magnetization ($M_{rm s}$). We experimentally and theoretically investigated the ANE and anomalous Hall effect in sputter-deposited Mn$_4$N films. It was revealed that the observed negative anomalous Hall conductivity ($sigma_{xy}$) could be explained by two different coexisting magnetic structures, that is, a dominant magnetic structure with high $K_{rm u}$ contaminated by another structure with negligible $K_{rm u}$ owing to an imperfect degree of order of nitrogen. The observed transverse thermoelectric power ($S_{rm ANE}$) of $+0.5, mu{rm V/K}$ at $300, {rm K}$ gave a transverse thermoelectric coefficient ($alpha_{xy}$) of $+0.34, {rm A/(m cdot K)}$, which was smaller than the value predicted from first-principles calculation. The interpretation for $alpha_{xy}$ based on the first-principles calculations led us to conclude that the realization of single magnetic structure with high $K_{rm u}$ and optimal adjustment of the Fermi level are promising approaches to enhance $S_{rm ANE}$ in Mn$_4$N through the sign reversal of $sigma_{xy}$ and the enlargement of $alpha_{xy}$ up to a theoretical value of $1.77, {rm A/(m cdot K)}$.
Antiferromagnetic spin motion at terahertz (THz) frequencies attracts growing interests for fast spintronics, however their smaller responses to external field inhibit device application. Recently the noncollinear antiferromagnet Mn$_3$Sn, a Weyl semimetal candidate, was reported to show large anomalous Hall effect (AHE) at room temperature comparable to ferromagnets. Dynamical aspect of such large responses is an important issue to be clarified for future THz data processing. Here the THz anomalous Hall conductivity in Mn$_3$Sn thin films is investigated by polarization-resolved spectroscopy. Large anomalous Hall conductivity Re $sigma_{xy} (omega) sim$ 20 $rm{Omega^{-1} cm^{-1}}$ at THz frequencies is clearly observed as polarization rotation. In contrast, Im $sigma_{xy} (omega)$ is small up to a few THz, showing that the AHE remains dissipationless over a large frequency range. A peculiar temperature dependence corresponding to the breaking/recovery of symmetry in the spin texture is also discussed. Observation of the THz AHE at room temperature demonstrates the ultrafast readout for the antiferromagnetic spintronics using Mn$_3$Sn and will also open new avenue for studying nonequilibrium dynamics in Weyl antiferromagnets.
The magneto-thermoelectric properties of Heusler compound thin films are very diverse. Here, we discuss the anomalous Nernst response of Co$_2$MnGa thin films. We systematically study the anomalous Nernst coefficient as a function of temperature, and we show that unlike the anomalous Hall effect, the anomalous Nernst effect in Co$_2$MnGa strongly varies with temperature. We exploit the on-chip thermometry technique to quantify the thermal gradient, which enables us to directly evaluate the anomalous Nernst coefficient. We compare these results to a reference CoFeB thin film. We show that the 50-nm-thick Co$_2$MnGa films exhibit a large anomalous Nernst effect of -2$mu$V/K at 300 K, whereas the 10-nm-thick Co$_2$MnGa film exhibits a significantly smaller anomalous Nernst coefficient despite having similar volume magnetizations. These findings suggest that the microscopic origin of the anomalous Nernst effect in Co$_2$MnGa is complex and may contain contributions from skew-scattering, side-jump or intrinsic Berry phase. In any case, the large anomalous Nernst coefficent of Co$_2$MnGa thin films at room temperature makes this material system a very promising candidate for efficient spin-caloritronic devices.
Antiferromagnets with tunable phase transitions are promising for future spintronics applications. We investigated spin-dependent transport properties of FeRh thin films, which show a temperature driven antiferromagnetic-to-ferromagnetic phase transition. Epitaxial FeRh films grown on MgO (001) substrates exhibit a clear magnetic and electronic phase transition. By performing anomalous Hall and anomalous Nernst effect measurements over a wide range of temperatures, we demonstrate that the thermally driven transition shows distinctly different transverse transport on both side of the phase transition. Particularly, a sign change of both anomalous Hall and Nernst signals is observed.
Noncollinear antiferromagnets with a D0$_{19}$ (space group = 194, P6$_{3}$/mmc) hexagonal structure have garnered much attention for their potential applications in topological spintronics. Here, we report the deposition of continuous epitaxial thin films of such a material, Mn$_{3}$Sn, and characterize their crystal structure using a combination of x-ray diffraction and transmission electron microscopy. Growth of Mn$_{3}$Sn films with both (0001) c-axis orientation and (40$bar{4}$3) texture is achieved. In the latter case, the thin films exhibit a small uncompensated Mn moment in the basal plane, quantified via magnetometry and x-ray magnetic circular dichroism experiments. This cannot account for the large anomalous Hall effect simultaneously observed in these films, even at room temperature, with magnitude $sigma_{mathrm{xy}}$ ($mu_{0}H$ = 0 T) = 21 $mathrm{Omega}^{-1}mathrm{cm}^{-1}$ and coercive field $mu_{0}H_{mathrm{C}}$ = 1.3 T. We attribute the origin of this anomalous Hall effect to momentum-space Berry curvature arising from the symmetry-breaking inverse triangular spin structure of Mn$_{3}$Sn. Upon cooling through the transition to a glassy ferromagnetic state at around 50 K, a peak in the Hall resistivity close to the coercive field indicates the onset of a topological Hall effect contribution, due to the emergence of a scalar spin chirality generating a real-space Berry phase. We demonstrate that the polarity of this topological Hall effect, and hence the chiral-nature of the noncoplanar magnetic structure driving it, can be controlled using different field cooling conditions.