Do you want to publish a course? Click here

Deep combinatorial optimisation for optimal stopping time problems : application to swing options pricing

58   0   0.0 ( 0 )
 Added by Thomas Deschatre
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A new method for stochastic control based on neural networks and using randomisation of discrete random variables is proposed and applied to optimal stopping time problems. The method models directly the policy and does not need the derivation of a dynamic programming principle nor a backward stochastic differential equation. Unlike continuous optimization where automatic differentiation is used directly, we propose a likelihood ratio method for gradient computation. Numerical tests are done on the pricing of American and swing options. The proposed algorithm succeeds in pricing high dimensional American and swing options in a reasonable computation time, which is not possible with classical algorithms.



rate research

Read More

115 - Yu-Jui Huang , Zhenhua Wang 2020
We study an optimal stopping problem under non-exponential discounting, where the state process is a multi-dimensional continuous strong Markov process. The discount function is taken to be log sub-additive, capturing decreasing impatience in behavioral economics. On strength of probabilistic potential theory, we establish the existence of an optimal equilibrium among a sufficiently large collection of equilibria, consisting of finely closed equilibria satisfying a boundary condition. This generalizes the existence of optimal equilibria for one-dimensional stopping problems in prior literature.
In this paper we propose an efficient method to compute the price of multi-asset American options, based on Machine Learning, Monte Carlo simulations and variance reduction technique. Specifically, the options we consider are written on a basket of assets, each of them following a Black-Scholes dynamics. In the wake of Ludkovskis approach (2018), we implement here a backward dynamic programming algorithm which considers a finite number of uniformly distributed exercise dates. On these dates, the option value is computed as the maximum between the exercise value and the continuation value, which is obtained by means of Gaussian process regression technique and Monte Carlo simulations. Such a method performs well for low dimension baskets but it is not accurate for very high dimension baskets. In order to improve the dimension range, we employ the European option price as a control variate, which allows us to treat very large baskets and moreover to reduce the variance of price estimators. Numerical tests show that the proposed algorithm is fast and reliable, and it can handle also American options on very large baskets of assets, overcoming the problem of the curse of dimensionality.
We continue a series of papers devoted to construction of semi-analytic solutions for barrier options. These options are written on underlying following some simple one-factor diffusion model, but all the parameters of the model as well as the barriers are time-dependent. We managed to show that these solutions are systematically more efficient for pricing and calibration than, eg., the corresponding finite-difference solvers. In this paper we extend this technique to pricing double barrier options and present two approaches to solving it: the General Integral transform method and the Heat Potential method. Our results confirm that for double barrier options these semi-analytic techniques are also more efficient than the traditional numerical methods used to solve this type of problems.
An efficient compression technique based on hierarchical tensors for popular option pricing methods is presented. It is shown that the curse of dimensionality can be alleviated for the computation of Bermudan option prices with the Monte Carlo least-squares approach as well as the dual martingale method, both using high-dimensional tensorized polynomial expansions. This discretization allows for a simple and computationally cheap evaluation of conditional expectations. Complexity estimates are provided as well as a description of the optimization procedures in the tensor train format. Numerical experiments illustrate the favourable accuracy of the proposed methods. The dynamical programming method yields results comparable to recent Neural Network based methods.
55 - Fabien Le Floch 2021
There is no exact closed form formula for pricing of European options with discrete cash dividends under the model where the underlying asset price follows a piecewise lognormal process with jumps at dividend ex-dates. This paper presents alternative expansions based on the technique of Etore and Gobet, leading to more robust first, second and third-order expansions across the range of strikes and the range of dividend dates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا