Do you want to publish a course? Click here

Semi-analytic pricing of double barrier options with time-dependent barriers and rebates at hit

136   0   0.0 ( 0 )
 Added by Andrey Itkin
 Publication date 2020
  fields Financial
and research's language is English




Ask ChatGPT about the research

We continue a series of papers devoted to construction of semi-analytic solutions for barrier options. These options are written on underlying following some simple one-factor diffusion model, but all the parameters of the model as well as the barriers are time-dependent. We managed to show that these solutions are systematically more efficient for pricing and calibration than, eg., the corresponding finite-difference solvers. In this paper we extend this technique to pricing double barrier options and present two approaches to solving it: the General Integral transform method and the Heat Potential method. Our results confirm that for double barrier options these semi-analytic techniques are also more efficient than the traditional numerical methods used to solve this type of problems.



rate research

Read More

We continue a series of papers where prices of the barrier options written on the underlying, which dynamics follows some one factor stochastic model with time-dependent coefficients and the barrier, are obtained in semi-closed form, see (Carr and Itkin, 2020, Itkin and Muravey, 2020). This paper extends this methodology to the CIR model for zero-coupon bonds, and to the CEV model for stocks which are used as the corresponding underlying for the barrier options. We describe two approaches. One is generalization of the method of heat potentials for the heat equation to the Bessel process, so we call it the method of Bessel potentials. We also propose a general scheme how to construct the potential method for any linear differential operator with time-independent coefficients. The second one is the method of generalized integral transform, which is also extended to the Bessel process. In all cases, a semi-closed solution means that first, we need to solve numerically a linear Volterra equation of the second kind, and then the option price is represented as a one-dimensional integral. We demonstrate that computationally our method is more efficient than both the backward and forward finite difference methods while providing better accuracy and stability. Also, it is shown that both method dont duplicate but rather compliment each other, as one provides very accurate results at small maturities, and the other one - at high maturities.
In this paper we derive semi-closed form prices of barrier (perhaps, time-dependent) options for the Hull-White model, ie., where the underlying follows a time-dependent OU process with a mean-reverting drift. Our approach is similar to that in (Carr and Itkin, 2020) where the method of generalized integral transform is applied to pricing barrier options in the time-dependent OU model, but extends it to an infinite domain (which is an unsolved problem yet). Alternatively, we use the method of heat potentials for solving the same problems. By semi-closed solution we mean that first, we need to solve numerically a linear Volterra equation of the first kind, and then the option price is represented as a one-dimensional integral. Our analysis shows that computationally our method is more efficient than the backward and even forward finite difference methods (if one uses them to solve those problems), while providing better accuracy and stability.
We extend the approach of Carr, Itkin and Muravey, 2021 for getting semi-analytical prices of barrier options for the time-dependent Heston model with time-dependent barriers by applying it to the so-called $lambda$-SABR stochastic volatility model. In doing so we modify the general integral transform method (see Itkin, Lipton, Muravey, Generalized integral transforms in mathematical finance, World Scientific, 2021) and deliver solution of this problem in the form of Fourier-Bessel series. The weights of this series solve a linear mixed Volterra-Fredholm equation (LMVF) of the second kind also derived in the paper. Numerical examples illustrate speed and accuracy of our method which are comparable with those of the finite-difference approach at small maturities and outperform them at high maturities even by using a simplistic implementation of the RBF method for solving the LMVF.
109 - Fabien Le Floch 2021
This paper presents the Runge-Kutta-Legendre finite difference scheme, allowing for an additional shift in its polynomial representation. A short presentation of the stability region, comparatively to the Runge-Kutta-Chebyshev scheme follows. We then explore the problem of pricing American options with the Runge-Kutta-Legendre scheme under the one factor Black-Scholes and the two factor Heston stochastic volatility models, as well as the pricing of butterfly spread and digital options under the uncertain volatility model, where a Hamilton-Jacobi-Bellman partial differential equation needs to be solved. We explore the order of convergence in these problems, as well as the option greeks stability, compared to the literature and popular schemes such as Crank-Nicolson, with Rannacher time-stepping.
We present a multigrid iterative algorithm for solving a system of coupled free boundary problems for pricing American put options with regime-switching. The algorithm is based on our recently developed compact finite difference scheme coupled with Hermite interpolation for solving the coupled partial differential equations consisting of the asset option and the delta, gamma, and speed sensitivities. In the algorithm, we first use the Gauss-Seidel method as a smoother and then implement a multigrid strategy based on modified cycle (M-cycle) for solving our discretized equations. Hermite interpolation with Newton interpolatory divided difference (as the basis) is used in estimating the coupled asset, delta, gamma, and speed options in the set of equations. A numerical experiment is performed with the two- and four- regime examples and compared with other existing methods to validate the optimal strategy. Results show that this algorithm provides a fast and efficient tool for pricing American put options with regime-switching.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا