Do you want to publish a course? Click here

Optimal Equilibria for Multi-dimensional Time-inconsistent Stopping Problems

116   0   0.0 ( 0 )
 Added by Yu-Jui Huang
 Publication date 2020
  fields Financial
and research's language is English




Ask ChatGPT about the research

We study an optimal stopping problem under non-exponential discounting, where the state process is a multi-dimensional continuous strong Markov process. The discount function is taken to be log sub-additive, capturing decreasing impatience in behavioral economics. On strength of probabilistic potential theory, we establish the existence of an optimal equilibrium among a sufficiently large collection of equilibria, consisting of finely closed equilibria satisfying a boundary condition. This generalizes the existence of optimal equilibria for one-dimensional stopping problems in prior literature.



rate research

Read More

104 - Yu-Jui Huang , Xiang Yu 2019
An unconventional approach for optimal stopping under model ambiguity is introduced. Besides ambiguity itself, we take into account how ambiguity-averse an agent is. This inclusion of ambiguity attitude, via an $alpha$-maxmin nonlinear expectation, renders the stopping problem time-inconsistent. We look for subgame perfect equilibrium stopping policies, formulated as fixed points of an operator. For a one-dimensional diffusion with drift and volatility uncertainty, we show that every equilibrium can be obtained through a fixed-point iteration. This allows us to capture much more diverse behavior, depending on an agents ambiguity attitude, beyond the standard worst-case (or best-case) analysis. In a concrete example of real options valuation under volatility uncertainty, all equilibrium stopping policies, as well as the best one among them, are fully characterized. It demonstrates explicitly the effect of ambiguity attitude on decision making: the more ambiguity-averse, the more eager to stop -- so as to withdraw from the uncertain environment. The main result hinges on a delicate analysis of continuous sample paths in the canonical space and the capacity theory. To resolve measurability issues, a generalized measurable projection theorem, new to the literature, is also established.
In this paper we propose and solve an optimal dividend problem with capital injections over a finite time horizon. The surplus dynamics obeys a linearly controlled drifted Brownian motion that is reflected at the origin, dividends give rise to time-dependent instantaneous marginal profits, whereas capital injections are subject to time-dependent instantaneous marginal costs. The aim is to maximize the sum of a liquidation value at terminal time and of the total expected profits from dividends, net of the total expected costs for capital injections. Inspired by the study of El Karoui and Karatzas (1989) on reflected follower problems, we relate the optimal dividend problem with capital injections to an optimal stopping problem for a drifted Brownian motion that is absorbed at the origin. We show that whenever the optimal stopping rule is triggered by a time-dependent boundary, the value function of the optimal stopping problem gives the derivative of the value function of the optimal dividend problem. Moreover, the optimal dividend strategy is also triggered by the moving boundary of the associated stopping problem. The properties of this boundary are then investigated in a case study in which instantaneous marginal profits and costs from dividends and capital injections are constants discounted at a constant rate.
We consider an incomplete multi-asset binomial market model. We prove that for a wide class of contingent claims the extremal multi-step martingale measure is a power of the corresponding single-step extremal martingale measure. This allows for closed form formulas for the bounds of a no-arbitrage contingent claim price interval. We construct a feasible algorithm for computing those boundaries as well as for the corresponding hedging strategies. Our results apply, for example, to European basket call and put options and Asian arithmetic average options.
A new method for stochastic control based on neural networks and using randomisation of discrete random variables is proposed and applied to optimal stopping time problems. The method models directly the policy and does not need the derivation of a dynamic programming principle nor a backward stochastic differential equation. Unlike continuous optimization where automatic differentiation is used directly, we propose a likelihood ratio method for gradient computation. Numerical tests are done on the pricing of American and swing options. The proposed algorithm succeeds in pricing high dimensional American and swing options in a reasonable computation time, which is not possible with classical algorithms.
We provide a survey of recent results on model calibration by Optimal Transport. We present the general framework and then discuss the calibration of local, and local-stochastic, volatility models to European options, the joint VIX/SPX calibration problem as well as calibration to some path-dependent options. We explain the numerical algorithms and present examples both on synthetic and market data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا