No Arabic abstract
News website comment sections are spaces where potentially conflicting opinions and beliefs are voiced. Addressing questions of how to study such cultural and societal conflicts through technological means, the present article critically examines possibilities and limitations of machine-guided exploration and potential facilitation of on-line opinion dynamics. These investigations are guided by a discussion of an experimental observatory for mining and analyzing opinions from climate change-related user comments on news articles from the TheGuardian.com. This observatory combines causal mapping methods with computational text analysis in order to mine beliefs and visualize opinion landscapes based on expressions of causation. By (1) introducing digital methods and open infrastructures for data exploration and analysis and (2) engaging in debates about the implications of such methods and infrastructures, notably in terms of the leap from opinion observation to debate facilitation, the article aims to make a practical and theoretical contribution to the study of opinion dynamics and conflict in new media environments.
With the spread and development of new epidemics, it is of great reference value to identify the changing trends of epidemics in public emotions. We designed and implemented the COVID-19 public opinion monitoring system based on time series thermal new word mining. A new word structure discovery scheme based on the timing explosion of network topics and a Chinese sentiment analysis method for the COVID-19 public opinion environment is proposed. Establish a Scrapy-Redis-Bloomfilter distributed crawler framework to collect data. The system can judge the positive and negative emotions of the reviewer based on the comments, and can also reflect the depth of the seven emotions such as Hopeful, Happy, and Depressed. Finally, we improved the sentiment discriminant model of this system and compared the sentiment discriminant error of COVID-19 related comments with the Jiagu deep learning model. The results show that our model has better generalization ability and smaller discriminant error. We designed a large data visualization screen, which can clearly show the trend of public emotions, the proportion of various emotion categories, keywords, hot topics, etc., and fully and intuitively reflect the development of public opinion.
The history of journalism and news diffusion is tightly coupled with the effort to dispel hoaxes, misinformation, propaganda, unverified rumours, poor reporting, and messages containing hate and divisions. With the explosive growth of online social media and billions of individuals engaged with consuming, creating, and sharing news, this ancient problem has surfaced with a renewed intensity threatening our democracies, public health, and news outlets credibility. This has triggered many researchers to develop new methods for studying, understanding, detecting, and preventing fake-news diffusion; as a consequence, thousands of scientific papers have been published in a relatively short period, making researchers of different disciplines to struggle in search of open problems and most relevant trends. The aim of this survey is threefold: first, we want to provide the researchers interested in this multidisciplinary and challenging area with a network-based analysis of the existing literature to assist them with a visual exploration of papers that can be of interest; second, we present a selection of the main results achieved so far adopting the network as an unifying framework to represent and make sense of data, to model diffusion processes, and to evaluate different debunking strategies. Finally, we present an outline of the most relevant research trends focusing on the moving target of fake-news, bots, and trolls identification by means of data mining and text technologies; despite scholars working on computational linguistics and networks traditionally belong to different scientific communities, we expect that forthcoming computational approaches to prevent fake news from polluting the social media must be developed using hybrid and up-to-date methodologies.
Here we developed a new conceptual, stochastic Heterogeneous Opinion-Status model (HOpS model), which is adaptive network model. The HOpS model admits to identify the main attributes of dynamics on networks and to study analytically the relation between topological network properties and processes taking place on a network. Another key point of the HOpS model is the possibility to study network dynamics via the novel parameter of heterogeneity. We show that not only clear topological network properties, such as node degree, but also, the nodes status distribution (the factor of network heterogeneity) play an important role in so-called opinion spreading and information diffusion on a network. This model can be potentially used for studying the co-evolution of globally aggregated or averaged key observables of the earth system. These include natural variables such as atmospheric, oceanic and land carbon stocks, as well as socio-economic quantities such as global human population, economic production or wellbeing.
Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.
The increase in the prevalence of mental health problems has coincided with a growing popularity of health related social networking sites. Regardless of their therapeutic potential, On-line Support Groups (OSGs) can also have negative effects on patients. In this work we propose a novel methodology to automatically verify the presence of therapeutic factors in social networking websites by using Natural Language Processing (NLP) techniques. The methodology is evaluated on On-line asynchronous multi-party conversations collected from an OSG and Twitter. The results of the analysis indicate that therapeutic factors occur more frequently in OSG conversations than in Twitter conversations. Moreover, the analysis of OSG conversations reveals that the users of that platform are supportive, and interactions are likely to lead to the improvement of their emotional state. We believe that our method provides a stepping stone towards automatic analysis of emotional states of users of online platforms. Possible applications of the method include provision of guidelines that highlight potential implications of using such platforms on users mental health, and/or support in the analysis of their impact on specific individuals.