No Arabic abstract
With the spread and development of new epidemics, it is of great reference value to identify the changing trends of epidemics in public emotions. We designed and implemented the COVID-19 public opinion monitoring system based on time series thermal new word mining. A new word structure discovery scheme based on the timing explosion of network topics and a Chinese sentiment analysis method for the COVID-19 public opinion environment is proposed. Establish a Scrapy-Redis-Bloomfilter distributed crawler framework to collect data. The system can judge the positive and negative emotions of the reviewer based on the comments, and can also reflect the depth of the seven emotions such as Hopeful, Happy, and Depressed. Finally, we improved the sentiment discriminant model of this system and compared the sentiment discriminant error of COVID-19 related comments with the Jiagu deep learning model. The results show that our model has better generalization ability and smaller discriminant error. We designed a large data visualization screen, which can clearly show the trend of public emotions, the proportion of various emotion categories, keywords, hot topics, etc., and fully and intuitively reflect the development of public opinion.
The novel coronavirus (SARS-CoV-2) which causes COVID-19 is an ongoing pandemic. There are ongoing studies with up to hundreds of publications uploaded to databases daily. We are exploring the use-case of artificial intelligence and natural language processing in order to efficiently sort through these publications. We demonstrate that clinical trial information, preclinical studies, and a general topic model can be used as text mining data intelligence tools for scientists all over the world to use as a resource for their own research. To evaluate our method, several metrics are used to measure the information extraction and clustering results. In addition, we demonstrate that our workflow not only have a use-case for COVID-19, but for other disease areas as well. Overall, our system aims to allow scientists to more efficiently research coronavirus. Our automatically updating modules are available on our information portal at https://ghddi-ailab.github.io/Targeting2019-nCoV/ for public viewing.
Successful navigation of the Covid-19 pandemic is predicated on public cooperation with safety measures and appropriate perception of risk, in which emotion and attention play important roles. Signatures of public emotion and attention are present in social media data, thus natural language analysis of this text enables near-to-real-time monitoring of indicators of public risk perception. We compare key epidemiological indicators of the progression of the pandemic with indicators of the public perception of the pandemic constructed from ~20 million unique Covid-19-related tweets from 12 countries posted between 10th March -- 14th June 2020. We find evidence of psychophysical numbing: Twitter users increasingly fixate on mortality, but in a decreasingly emotional and increasingly analytic tone. Semantic network analysis based on word co-occurrences reveals changes in the emotional framing of Covid-19 casualties that are consistent with this hypothesis. We also find that the average attention afforded to national Covid-19 mortality rates is modelled accurately with the Weber-Fechner and power law functions of sensory perception. Our parameter estimates for these models are consistent with estimates from psychological experiments, and indicate that users in this dataset exhibit differential sensitivity by country to the national Covid-19 death rates. Our work illustrates the potential utility of social media for monitoring public risk perception and guiding public communication during crisis scenarios.
The explosion of disinformation accompanying the COVID-19 pandemic has overloaded fact-checkers and media worldwide, and brought a new major challenge to government responses worldwide. Not only is disinformation creating confusion about medical science amongst citizens, but it is also amplifying distrust in policy makers and governments. To help tackle this, we developed computational methods to categorise COVID-19 disinformation. The COVID-19 disinformation categories could be used for a) focusing fact-checking efforts on the most damaging kinds of COVID-19 disinformation; b) guiding policy makers who are trying to deliver effective public health messages and counter effectively COVID-19 disinformation. This paper presents: 1) a corpus containing what is currently the largest available set of manually annotated COVID-19 disinformation categories; 2) a classification-aware neural topic model (CANTM) designed for COVID-19 disinformation category classification and topic discovery; 3) an extensive analysis of COVID-19 disinformation categories with respect to time, volume, false type, media type and origin source.
We created this EVIDENCEMINER system for automatic textual evidence mining in COVID-19 literature. EVIDENCEMINER is a web-based system that lets users query a natural language statement and automatically retrieves textual evidence from a background corpora for life sciences. It is constructed in a completely automated way without any human effort for training data annotation. EVIDENCEMINER is supported by novel data-driven methods for distantly supervised named entity recognition and open information extraction. The named entities and meta-patterns are pre-computed and indexed offline to support fast online evidence retrieval. The annotation results are also highlighted in the original document for better visualization. EVIDENCEMINER also includes analytic functionalities such as the most frequent entity and relation summarization.
We analyze Twitter data relating to the COVID-19 pandemic using dynamic topic modeling techniques to learn topics and their prevalence over time. Topics are learned using four methods: nonnegative matrix factorization (NMF), nonnegative CP tensor decomposition (NCPD), online NMF, and online NCPD. All of the methods considered discover major topics that persist for multiple weeks relating to China, social distancing, and U.S. President Trump. The topics about China dominate in early February before giving way to more diverse topics. We observe that NCPD and online NCPD can detect topics that are prevalent over a few days, such as the outbreak in South Korea. The topics detected by NMF and online NMF, however, are prevalent over longer periods of time. Our results are validated against external news sources.