Do you want to publish a course? Click here

Surveying the Research on Fake News in Social Media: a Tale of Networks and Language

253   0   0.0 ( 0 )
 Added by Alfonso Semeraro
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The history of journalism and news diffusion is tightly coupled with the effort to dispel hoaxes, misinformation, propaganda, unverified rumours, poor reporting, and messages containing hate and divisions. With the explosive growth of online social media and billions of individuals engaged with consuming, creating, and sharing news, this ancient problem has surfaced with a renewed intensity threatening our democracies, public health, and news outlets credibility. This has triggered many researchers to develop new methods for studying, understanding, detecting, and preventing fake-news diffusion; as a consequence, thousands of scientific papers have been published in a relatively short period, making researchers of different disciplines to struggle in search of open problems and most relevant trends. The aim of this survey is threefold: first, we want to provide the researchers interested in this multidisciplinary and challenging area with a network-based analysis of the existing literature to assist them with a visual exploration of papers that can be of interest; second, we present a selection of the main results achieved so far adopting the network as an unifying framework to represent and make sense of data, to model diffusion processes, and to evaluate different debunking strategies. Finally, we present an outline of the most relevant research trends focusing on the moving target of fake-news, bots, and trolls identification by means of data mining and text technologies; despite scholars working on computational linguistics and networks traditionally belong to different scientific communities, we expect that forthcoming computational approaches to prevent fake news from polluting the social media must be developed using hybrid and up-to-date methodologies.



rate research

Read More

329 - Lu Cheng , Ruocheng Guo , Kai Shu 2020
Recent years have witnessed remarkable progress towards computational fake news detection. To mitigate its negative impact, we argue that it is critical to understand what user attributes potentially cause users to share fake news. The key to this causal-inference problem is to identify confounders -- variables that cause spurious associations between treatments (e.g., user attributes) and outcome (e.g., user susceptibility). In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities. Learning such user behavior is typically subject to selection bias in users who are susceptible to share news on social media. Drawing on causal inference theories, we first propose a principled approach to alleviating selection bias in fake news dissemination. We then consider the learned unbiased fake news sharing behavior as the surrogate confounder that can fully capture the causal links between user attributes and user susceptibility. We theoretically and empirically characterize the effectiveness of the proposed approach and find that it could be useful in protecting society from the perils of fake news.
The rise of fake news in the past decade has brought with it a host of consequences, from swaying opinions on elections to generating uncertainty during a pandemic. A majority of methods developed to combat disinformation either focus on fake news content or malicious actors who generate it. However, the virality of fake news is largely dependent upon the users who propagate it. A deeper understanding of these users can contribute to the development of a framework for identifying users who are likely to spread fake news. In this work, we study the characteristics and motivational factors of fake news spreaders on social media with input from psychological theories and behavioral studies. We then perform a series of experiments to determine if fake news spreaders can be found to exhibit different characteristics than other users. Further, we investigate our findings by testing whether the characteristics we observe amongst fake news spreaders in our experiments can be applied to the detection of fake news spreaders in a real social media environment.
Although significant effort has been applied to fact-checking, the prevalence of fake news over social media, which has profound impact on justice, public trust and our society, remains a serious problem. In this work, we focus on propagation-based fake news detection, as recent studies have demonstrated that fake news and real news spread differently online. Specifically, considering the capability of graph neural networks (GNNs) in dealing with non-Euclidean data, we use GNNs to differentiate between the propagation patterns of fake and real news on social media. In particular, we concentrate on two questions: (1) Without relying on any text information, e.g., tweet content, replies and user descriptions, how accurately can GNNs identify fake news? Machine learning models are known to be vulnerable to adversarial attacks, and avoiding the dependence on text-based features can make the model less susceptible to the manipulation of advanced fake news fabricators. (2) How to deal with new, unseen data? In other words, how does a GNN trained on a given dataset perform on a new and potentially vastly different dataset? If it achieves unsatisfactory performance, how do we solve the problem without re-training the model on the entire data from scratch? We study the above questions on two datasets with thousands of labelled news items, and our results show that: (1) GNNs can achieve comparable or superior performance without any text information to state-of-the-art methods. (2) GNNs trained on a given dataset may perform poorly on new, unseen data, and direct incremental training cannot solve the problem---this issue has not been addressed in the previous work that applies GNNs for fake news detection. In order to solve the problem, we propose a method that achieves balanced performance on both existing and new datasets, by using techniques from continual learning to train GNNs incrementally.
Todays social media platforms enable to spread both authentic and fake news very quickly. Some approaches have been proposed to automatically detect such fake news based on their content, but it is difficult to agree on universal criteria of authenticity (which can be bypassed by adversaries once known). Besides, it is obviously impossible to have each news item checked by a human. In this paper, we a mechanism to limit the spread of fake news which is not based on content. It can be implemented as a plugin on a social media platform. The principle is as follows: a team of fact-checkers reviews a small number of news items (the most popular ones), which enables to have an estimation of each users inclination to share fake news items. Then, using a Bayesian approach, we estimate the trustworthiness of future news items, and treat accordingly those of them that pass a certain untrustworthiness threshold. We then evaluate the effectiveness and overhead of this technique on a large Twitter graph. We show that having a few thousands users exposed to one given news item enables to reach a very precise estimation of its reliability. We thus identify more than 99% of fake news items with no false positives. The performance impact is very small: the induced overhead on the 90th percentile latency is less than 3%, and less than 8% on the throughput of user operations.
142 - Bin Guo , Yasan Ding , Yueheng Sun 2019
The wide spread of fake news in social networks is posing threats to social stability, economic development and political democracy etc. Numerous studies have explored the effective detection approaches of online fake news, while few works study the intrinsic propagation and cognition mechanisms of fake news. Since the development of cognitive science paves a promising way for the prevention of fake news, we present a new research area called Cognition Security (CogSec), which studies the potential impacts of fake news to human cognition, ranging from misperception, untrusted knowledge acquisition, targeted opinion/attitude formation, to biased decision making, and investigates the effective ways for fake news debunking. CogSec is a multidisciplinary research field that leverages knowledge from social science, psychology, cognition science, neuroscience, AI and computer science. We first propose related definitions to characterize CogSec and review the literature history. We further investigate the key research challenges and techniques of CogSec, including human-content cognition mechanism, social influence and opinion diffusion, fake news detection and malicious bot detection. Finally, we summarize the open issues and future research directions, such as early detection of fake news, explainable fake news debunking, social contagion and diffusion models of fake news, and so on.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا