Do you want to publish a course? Click here

Tackling Climate Change with Machine Learning

93   0   0.0 ( 0 )
 Added by David Rolnick
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.



rate research

Read More

In recent years, machine learning (ML) systems have been increasingly applied for performing creative tasks. Such creative ML approaches have seen wide use in the domains of visual art and music for applications such as image and music generation and style transfer. However, similar creative ML techniques have not been as widely adopted in the domain of game design despite the emergence of ML-based methods for generating game content. In this paper, we argue for leveraging and repurposing such creative techniques for designing content for games, referring to these as approaches for Game Design via Creative ML (GDCML). We highlight existing systems that enable GDCML and illustrate how creative ML can inform new systems via example applications and a proposed system.
Bias in machine learning has manifested injustice in several areas, such as medicine, hiring, and criminal justice. In response, computer scientists have developed myriad definitions of fairness to correct this bias in fielded algorithms. While some definitions are based on established legal and ethical norms, others are largely mathematical. It is unclear whether the general public agrees with these fairness definitions, and perhaps more importantly, whether they understand these definitions. We take initial steps toward bridging this gap between ML researchers and the public, by addressing the question: does a lay audience understand a basic definition of ML fairness? We develop a metric to measure comprehension of three such definitions--demographic parity, equal opportunity, and equalized odds. We evaluate this metric using an online survey, and investigate the relationship between comprehension and sentiment, demographics, and the definition itself.
Machine learning (ML) prediction APIs are increasingly widely used. An ML API can change over time due to model updates or retraining. This presents a key challenge in the usage of the API because it is often not clear to the user if and how the ML model has changed. Model shifts can affect downstream application performance and also create oversight issues (e.g. if consistency is desired). In this paper, we initiate a systematic investigation of ML API shifts. We first quantify the performance shifts from 2020 to 2021 of popular ML APIs from Google, Microsoft, Amazon, and others on a variety of datasets. We identified significant model shifts in 12 out of 36 cases we investigated. Interestingly, we found several datasets where the APIs predictions became significantly worse over time. This motivated us to formulate the API shift assessment problem at a more fine-grained level as estimating how the API models confusion matrix changes over time when the data distribution is constant. Monitoring confusion matrix shifts using standard random sampling can require a large number of samples, which is expensive as each API call costs a fee. We propose a principled adaptive sampling algorithm, MASA, to efficiently estimate confusion matrix shifts. MASA can accurately estimate the confusion matrix shifts in commercial ML APIs using up to 90% fewer samples compared to random sampling. This work establishes ML API shifts as an important problem to study and provides a cost-effective approach to monitor such shifts.
We present an automated method for measuring media bias. Inferring which newspaper published a given article, based only on the frequencies with which it uses different phrases, leads to a conditional probability distribution whose analysis lets us automatically map newspapers and phrases into a bias space. By analyzing roughly a million articles from roughly a hundred newspapers for bias in dozens of news topics, our method maps newspapers into a two-dimensional bias landscape that agrees well with previous bias classifications based on human judgement. One dimension can be interpreted as traditional left-right bias, the other as establishment bias. This means that although news bias is inherently political, its measurement need not be.
This is the Proceedings of NeurIPS 2018 Workshop on Machine Learning for the Developing World: Achieving Sustainable Impact, held in Montreal, Canada on December 8, 2018

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا