No Arabic abstract
We provide a systematic study of a noncommutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the noncommutative 2-tori. In particular, some relevant ergodic properties are proved for these quantum dynamical systems, extending the corresponding ones enjoyed by the classical Anzai skew-product. As an application, for a uniquely ergodic Anzai skew-product $F$ on the noncommutative $2$-torus $ba_a$, $ainbr$, we investigate the pointwise limit, $lim_{nto+infty}frac1{n}sum_{k=0}^{n-1}l^{-k}F^k(x)$, for $xinba_a$ and $l$ a point in the unit circle, and show that there exist examples for which the limit does not exist even in the weak topology.
Starting from a discrete $C^*$-dynamical system $(mathfrak{A}, theta, omega_o)$, we define and study most of the main ergodic properties of the crossed product $C^*$-dynamical system $(mathfrak{A}rtimes_alphamathbb{Z}, Phi_{theta, u},om_ocirc E)$, $E:mathfrak{A}rtimes_alphamathbb{Z}rightarrowga$ being the canonical conditional expectation of $mathfrak{A}rtimes_alphamathbb{Z}$ onto $mathfrak{A}$, provided $ainaut(ga)$ commute with the $*$-automorphism $th$ up tu a unitary $uinga$. Here, $Phi_{theta, u}inaut(mathfrak{A}rtimes_alphamathbb{Z})$ can be considered as the fully noncommutative generalisation of the celebrated skew-product defined by H. Anzai for the product of two tori in the classical case.
A C*-dynamical system is said to have the ideal separation property if every ideal in the corresponding crossed product arises from an invariant ideal in the C*-algebra. In this paper we characterize this property for unital C*-dynamical systems over discrete groups. To every C*-dynamical system we associate a twisted partial C*-dynamical system that encodes much of the structure of the action. This system can often be untwisted, for example when the algebra is commutative, or when the algebra is prime and a certain specific subgroup has vanishing Mackey obstruction. In this case, we obtain relatively simple necessary and sufficient conditions for the ideal separation property. A key idea is a notion of noncommutative boundary for a C*-dynamical system that generalizes Furstenbergs notion of topological boundary for a group.
We introduce a notion of noncommutative Choquet simplex, or briefly an nc simplex, that generalizes the classical notion of a simplex. While every simplex is an nc simplex, there are many more nc simplices. They arise naturally from C*-algebras and in noncommutative dynamics. We characterize nc simplices in terms of their geometry and in terms of structural properties of their corresponding operator systems. There is a natural definition of nc Bauer simplex that generalizes the classical definition of a Bauer simplex. We show that a compact nc convex set is an nc Bauer simplex if and only if it is affinely homeomorphic to the nc state space of a unital C*-algebra, generalizing a classical result of Bauer for unital commutative C*-algebras. We obtain several applications to noncommutative dynamics. We show that the set of nc states of a C*-algebra that are invariant with respect to the action of a discrete group is an nc simplex. From this, we obtain a noncommutative ergodic decomposition theorem with uniqueness. Finally, we establish a new characterization of discrete groups with Kazhdans property (T) that extends a result of Glasner and Weiss. Specifically, we show that a discrete group has property (T) if and only if for every action of the group on a unital C*-algebra, the set of invariant states is affinely homeomorphic to the state space of a unital C*-algebra.
Anzai skew-products are shown to be uniquely ergodic with respect to the fixed-point subalgebra if and only if there is a unique conditional expectation onto such a subalgebra which is invariant under the dynamics. For the particular case of skew-products, this solves a question raised by B. Abadie and K. Dykema in the wider context of $C^*$-dynamical systems.
For the noncommutative 2-torus, we define and study Fourier transforms arising from representations of states with central supports in the bidual, exhibiting a possibly nontrivial modular structure (i.e. type III representations). We then prove the associated noncommutative analogous of Riemann-Lebesgue Lemma and Hausdorff-Young Theorem. In addition, the $L^p$- convergence result of the Cesaro means (i.e. the Fejer theorem), and the Abel means reproducing the Poisson kernel are also established, providing inversion formulae for the Fourier transforms in $L^p$ spaces, $pin[1,2]$. Finally, in $L^2(M)$ we show how such Fourier transforms diagonalise appropriately some particular cases of modular Dirac operators, the latter being part of a one-parameter family of modular spectral triples naturally associated to the previously mentioned non type ${rm II}_1$ representations.