No Arabic abstract
A C*-dynamical system is said to have the ideal separation property if every ideal in the corresponding crossed product arises from an invariant ideal in the C*-algebra. In this paper we characterize this property for unital C*-dynamical systems over discrete groups. To every C*-dynamical system we associate a twisted partial C*-dynamical system that encodes much of the structure of the action. This system can often be untwisted, for example when the algebra is commutative, or when the algebra is prime and a certain specific subgroup has vanishing Mackey obstruction. In this case, we obtain relatively simple necessary and sufficient conditions for the ideal separation property. A key idea is a notion of noncommutative boundary for a C*-dynamical system that generalizes Furstenbergs notion of topological boundary for a group.
We consider a twisted action of a discrete group G on a unital C*-algebra A and give conditions ensuring that there is a bijective correspondence between the maximal invariant ideals of A and the maximal ideals in the associated reduced C*-crossed product.
We introduce a notion of noncommutative Choquet simplex, or briefly an nc simplex, that generalizes the classical notion of a simplex. While every simplex is an nc simplex, there are many more nc simplices. They arise naturally from C*-algebras and in noncommutative dynamics. We characterize nc simplices in terms of their geometry and in terms of structural properties of their corresponding operator systems. There is a natural definition of nc Bauer simplex that generalizes the classical definition of a Bauer simplex. We show that a compact nc convex set is an nc Bauer simplex if and only if it is affinely homeomorphic to the nc state space of a unital C*-algebra, generalizing a classical result of Bauer for unital commutative C*-algebras. We obtain several applications to noncommutative dynamics. We show that the set of nc states of a C*-algebra that are invariant with respect to the action of a discrete group is an nc simplex. From this, we obtain a noncommutative ergodic decomposition theorem with uniqueness. Finally, we establish a new characterization of discrete groups with Kazhdans property (T) that extends a result of Glasner and Weiss. Specifically, we show that a discrete group has property (T) if and only if for every action of the group on a unital C*-algebra, the set of invariant states is affinely homeomorphic to the state space of a unital C*-algebra.
We provide a systematic study of a noncommutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the noncommutative 2-tori. In particular, some relevant ergodic properties are proved for these quantum dynamical systems, extending the corresponding ones enjoyed by the classical Anzai skew-product. As an application, for a uniquely ergodic Anzai skew-product $F$ on the noncommutative $2$-torus $ba_a$, $ainbr$, we investigate the pointwise limit, $lim_{nto+infty}frac1{n}sum_{k=0}^{n-1}l^{-k}F^k(x)$, for $xinba_a$ and $l$ a point in the unit circle, and show that there exist examples for which the limit does not exist even in the weak topology.
We study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. We develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to our context. We complement our generic results with the detailed study of many important special cases. In particular we study crossed products of tensor algebras, triangular AF algebras and various associated C*-algebras. We make contributions to the study of C*-envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. We also answer questions from the pertinent literature.
Let $X$ be an infinite compact metric space with finite covering dimension and let $alpha, beta : Xto X$ be two minimal homeomorphisms. We prove that the crossed product $C^*$-algebras $C(X)rtimes_alphaZ$ and $C(X)rtimes_beltaZ$ are isomorphic if and only if they have isomorphic Elliott invariant. In a more general setting, we show that if $X$ is an infinite compact metric space and if $alpha: Xto X$ is a minimal homeomorphism such that $(X, alpha)$ has mean dimension zero, then the tensor product of the crossed product with a UHF-algebra of infinite type has generalized tracial rank at most one. This implies that the crossed product is in a classifiable class of amenable simple $C^*$-algebras.