Do you want to publish a course? Click here

Dirac electron behavior and NMR evidence for topological band inversion in ZrTe5

69   0   0.0 ( 0 )
 Added by Yefan Tian
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report $^{125}$Te NMR measurements of the topological quantum material ZrTe$_5$. Spin-lattice relaxation results, well-explained by a theoretical model of Dirac electron systems, reveal that the topological characteristic of ZrTe$_5$ is $T$-dependent, changing from weak topological insulator to strong topological insulator as temperature increases. Electronic structure calculations confirm this ordering, the reverse of what has been proposed. NMR results demonstrate a gapless Dirac semimetal state occurring at a Lifshitz transition temperature, $T_c=85$ K in our crystals. We demonstrate that the changes in NMR shift at $T_c$ also provide direct evidence of band inversion when the topological phase transition occurs.



rate research

Read More

107 - Yan Zhang , Chenlu Wang , Li Yu 2016
The topological materials have attracted much attention recently. While three-dimensional topological insulators are becoming abundant, two-dimensional topological insulators remain rare, particularly in natural materials. ZrTe5 has host a long-standing puzzle on its anomalous transport properties; its underlying origin remains elusive. Lately, ZrTe5 has ignited renewed interest because it is predicted that single-layer ZrTe5 is a two-dimensional topological insulator and there is possibly a topological phase transition in bulk ZrTe5. However, the topological nature of ZrTe5 is under debate as some experiments point to its being a three-dimensional or quasi-two-dimensional Dirac semimetal. Here we report high-resolution laser-based angle-resolved photoemission measurements on ZrTe5. The electronic property of ZrTe5 is dominated by two branches of nearly-linear-dispersion bands at the Brillouin zone center. These two bands are separated by an energy gap that decreases with decreasing temperature but persists down to the lowest temperature we measured (~2 K). The overall electronic structure exhibits a dramatic temperature dependence; it evolves from a p-type semimetal with a hole-like Fermi pocket at high temperature, to a semiconductor around ~135 K where its resistivity exhibits a peak, to an n-type semimetal with an electron-like Fermi pocket at low temperature. These results indicate a clear electronic evidence of the temperature-induced Lifshitz transition in ZrTe5. They provide a natural understanding on the underlying origin of the resistivity anomaly at ~135 K and its associated reversal of the charge carrier type. Our observations also provide key information on deciphering the topological nature of ZrTe5 and possible temperature-induced topological phase transition.
Much effort has been devoted to the electronic properties of relatively thick ZrTe5 crystals, focusing on their three-dimensional topological effects. Thin ZrTe5 crystals, on the other hand, were much less explored experimentally. Here we present detailed magnetotransport studies of few-layer ZrTe5 devices, in which electron-electron interactions and weak anti-localization are observed. The coexistence of the two effects manifests themselves in corroborating evidence presented in the temperature and magnetic field dependence of the resistance. Notably, the temperature-dependent phase coherence length extracted from weak anti-localization agrees with strong electron-electron scattering in the sample. Meanwhile, universal conductance fluctuations have temperature and gate voltage dependence that is similar to that of the phase coherence length. Lastly, all the transport properties in thin ZrTe5 crystals show strong two-dimensional characteristics. Our results provide new insight into the highly intricate properties of topological material ZrTe5.
136 - R. Wu , J.-Z. Ma , L.-X. Zhao 2016
Two-dimensional (2D) topological insulators (TIs) with a large bulk band-gap are promising for experimental studies of the quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-gap 2D TI candidates, only few of them have been experimentally verified. Here, by combining scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, we reveal that the top monolayer of ZrTe5 crystals hosts a large band gap of ~100 meV on the surface and a finite constant density-of-states within the gap at the step edge. Our first-principles calculations confirm the topologically nontrivial nature of the edge states. These results demonstrate that the top monolayer of ZrTe5 crystals is a large-gap 2D TI suitable for topotronic applications at high temperature.
Topologically nontrivial materials host protected edge states associated with the bulk band inversion through the bulk-edge correspondence. Manipulating such edge states is highly desired for developing new functions and devices practically using their dissipation-less nature and spin-momentum locking. Here we introduce a transition-metal dichalcogenide VTe$_2$, that hosts a charge density wave (CDW) coupled with the band inversion involving V3$d$ and Te5$p$ orbitals. Spin- and angle-resolved photoemission spectroscopy with first-principles calculations reveal the huge anisotropic modification of the bulk electronic structure by the CDW formation, accompanying the selective disappearance of Dirac-type spin-polarized topological surface states that exist in the normal state. Thorough three dimensional investigation of bulk states indicates that the corresponding band inversion at the Brillouin zone boundary dissolves upon CDW formation, by transforming into anomalous flat bands. Our finding provides a new insight to the topological manipulation of matters by utilizing CDWs flexible characters to external stimuli.
We use first-principles simulation and virtual crystal approximation to reveal the unique double band inversion and topological phase transition in Ge1-xSnx alloys. Wavefunction parity, spatial charge distribution and surface state spectrum analyses suggest that the band inversion in Ge1-xSnx is relayed by its first valence band. As the system evolves from Ge to {alpha}-Sn, its conduction band moves down, and inverts with the first and the second valence bands consecutively. The first band inversion makes the system nontrivial, while the second one does not change the topological invariant of the system. Both the band
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا