No Arabic abstract
The topological materials have attracted much attention recently. While three-dimensional topological insulators are becoming abundant, two-dimensional topological insulators remain rare, particularly in natural materials. ZrTe5 has host a long-standing puzzle on its anomalous transport properties; its underlying origin remains elusive. Lately, ZrTe5 has ignited renewed interest because it is predicted that single-layer ZrTe5 is a two-dimensional topological insulator and there is possibly a topological phase transition in bulk ZrTe5. However, the topological nature of ZrTe5 is under debate as some experiments point to its being a three-dimensional or quasi-two-dimensional Dirac semimetal. Here we report high-resolution laser-based angle-resolved photoemission measurements on ZrTe5. The electronic property of ZrTe5 is dominated by two branches of nearly-linear-dispersion bands at the Brillouin zone center. These two bands are separated by an energy gap that decreases with decreasing temperature but persists down to the lowest temperature we measured (~2 K). The overall electronic structure exhibits a dramatic temperature dependence; it evolves from a p-type semimetal with a hole-like Fermi pocket at high temperature, to a semiconductor around ~135 K where its resistivity exhibits a peak, to an n-type semimetal with an electron-like Fermi pocket at low temperature. These results indicate a clear electronic evidence of the temperature-induced Lifshitz transition in ZrTe5. They provide a natural understanding on the underlying origin of the resistivity anomaly at ~135 K and its associated reversal of the charge carrier type. Our observations also provide key information on deciphering the topological nature of ZrTe5 and possible temperature-induced topological phase transition.
The nature of the interaction between magnetism and topology in magnetic topological semimetals remains mysterious, but may be expected to lead to a variety of novel physics. We present $ab$ $initio$ band calculations, electrical transport and angle-resolved photoemission spectroscopy (ARPES) measurements on the magnetic semimetal EuAs$_3$, demonstrating a magnetism-induced topological transition from a topological nodal-line semimetal in the paramagnetic or the spin-polarized state to a topological massive Dirac metal in the antiferromagnetic (AFM) ground state at low temperature, featuring a pair of massive Dirac points, inverted bands and topological surface states on the (010) surface. Shubnikov-de Haas (SdH) oscillations in the AFM state identify nonzero Berry phase and a negative longitudinal magnetoresistance ($n$-LMR) induced by the chiral anomaly, confirming the topological nature predicted by band calculations. When magnetic moments are fully polarized by an external magnetic field, an unsaturated and extremely large magnetoresistance (XMR) of $sim$ 2$times10^5$ % at 1.8 K and 28.3 T is observed, likely arising from topological protection. Consistent with band calculations for the spin-polarized state, four new bands in quantum oscillations different from those in the AFM state are discerned, of which two are topologically protected. Nodal-line structures at the $Y$ point in the Brillouin zone (BZ) are proposed in both the spin-polarized and paramagnetic states, and the latter is proven by ARPES. Moreover, a temperature-induced Lifshitz transition accompanied by the emergence of a new band below 3 K is revealed. These results indicate that magnetic EuAs$_3$ provides a rich platform to explore exotic physics arising from the interaction of magnetism with topology.
In a semimetal, both electron and hole carriers contribute to the density of states at the Fermi level. The small band overlaps and multi-band effects give rise to many novel electronic properties, such as relativistic Dirac fermions with linear dispersion, titanic magnetoresistance and unconventional superconductivity. Black phosphorus has recently emerged as an exceptional semiconductor with high carrier mobility and a direct, tunable bandgap. Of particular importance is the search for exotic electronic states in black phosphorus, which may amplify the materials potential beyond semiconductor devices. Here we show that a moderate hydrostatic pressure effectively suppresses the band gap and induces a Lifshitz transition from semiconductor to semimetal in black phosphorus; a colossal magnetoresistance is observed in the semimetallic phase. Quantum oscillations in high magnetic field reveal the complex Fermi surface topology of the semimetallic black phosphorus. In particular, a Dirac-like fermion emerges at around 1.2 GPa, which is continuously tuned by external pressure. The observed semi-metallic behavior greatly enriches black phosphoruss material property, and sets the stage for the exploration of novel electronic states in this material. Moreover, these interesting behaviors make phosphorene a good candidate for the realization of a new two-dimensional relativistic electron system, other than graphene.
The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions, forming discrete Dirac cones in three-dimensional momentum space. In addition to the gapless points (Weyl/Dirac nodes) in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by topologically protected surface state with Fermi arcs on their specific surface. The Weyl/Dirac semimetals have attracted much attention recently they provide a venue not only to explore unique quantum phenomena but also to show potential applications. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more experimental evidence and theoretical investigation are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide strong experimental evidence on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.
Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2Se3 topological compound or a Bi2Te3 topological compound at high pressure. Here we report the discovery of superconductivity in the topological compound Sb2Te3 when pressure was applied. The crystal structure analysis results reveal that superconductivity at a low-pressure range occurs at the ambient phase. The Hall coefficient measurements indicate the change of p-type carriers at a low-pressure range within the ambient phase, into n-type at higher pressures, showing intimate relation to superconducting transition temperature. The first principle calculations based on experimental measurements of the crystal lattice show that Sb2Te3 retains its Dirac surface states within the low-pressure ambient phase where superconductivity was observed, which indicates a strong relationship between superconductivity and topology nature.
Cubic SrTiO$_{3}$ becomes tetragonal below 105 K. The antiferrodistortive (AFD) distortion leads to clockwise and counter-clockwise rotation of adjacent TiO$_{6}$ octahedra. This insulator becomes a metal upon the introduction of extremely low concentration of n-type dopants. However, signatures of the structural phase transition in charge conduction have remained elusive. Employing the Montgomery technique, we succeed in resolving the anisotropy of charge conductivity induced by the AFD transition, in the presence of different types of dopants. We find that the slight lattice distortion ($<6 times 10^{-4}$) gives rise to a twenty percent anisotropy in charge conductivity, in agreement with the expectations of band calculations. Application of uniaxial strain amplifies the detectable anisotropy by disfavoring one of the three possible tetragonal domains. In contrast with all other known anisotropic Fermi liquids, the anisotropy has opposite signs for elastic and inelastic scattering. Increasing the concentration of dopants leads to a drastic shift in the temperature of the AFD transition either upward or downward. The latter result puts strong constraints on any hypothetical role played by the AFD soft mode in the formation of Cooper pairs and the emergence of superconductivity in SrTiO$_3$.