No Arabic abstract
We use first-principles simulation and virtual crystal approximation to reveal the unique double band inversion and topological phase transition in Ge1-xSnx alloys. Wavefunction parity, spatial charge distribution and surface state spectrum analyses suggest that the band inversion in Ge1-xSnx is relayed by its first valence band. As the system evolves from Ge to {alpha}-Sn, its conduction band moves down, and inverts with the first and the second valence bands consecutively. The first band inversion makes the system nontrivial, while the second one does not change the topological invariant of the system. Both the band
The recent discovery of a topological phase transition in IV-VI narrow-gap semiconductors has revitalized the decades-old interest in the bulk band inversion occurring in these materials. Here we systematically study the (001) surface states of Pb{1-x}Sn{x}Se mixed crystals by means of angle-resolved photoelectron spectroscopy in the parameter space 0 <= x <= 0.37 and 300 K >= T >= 9 K. Using the surface-state observations, we monitor directly the topological phase transition in this solid solution and gain valuable information on the evolution of the underlying fundamental band gap of the system. In contrast to common model expectations, the band-gap evolution appears to be nonlinear as a function of the studied parameters, resulting in the measuring of a discontinuous band inversion process. This finding signifies that the anticipated gapless bulk state is in fact not a stable configuration and that the topological phase transition therefore exhibits features akin to a first-order transition.
Using ab initio tight-binding approaches, we investigate Floquet band engineering of the 1T phase of transition metal dichalcogenides (MX2, M = W, Mo and X = Te, Se, S) monolayers under the irradiation with circularly polarized light. Our first principles calculations demonstrate that light can induce important transitions in the topological phases of this emerging materials family. For example, upon irradiation, Te-based MX2 undergoes a phase transition from quantum spin Hall (QSH) semimetal to time-reversal symmetry broken QSH insulator with a nontrivial band gap of up to 92.5 meV. On the other hand, Se- and S-based MX2 undergoes the topological phase transition from the QSH effect to the quantum anomalous Hall (QAH) effect and into trivial phases with increasing light intensity. From a general perspective, our work brings further insight into non-equilibrium topological systems.
Perovskite oxides ABO$_3$ containing heavy B-site elements are a class of candidate materials to host topological metals with a large spin-orbit interaction. In contrast to the band insulator BaSnO$_3$, the semimetal BaPbO$_3$ is proposed to be a typical example with an inverted band structure, the conduction band of which is composed of mainly the O-2p orbital. In this study, we exemplify a band-gap modification by systematic structural, optical, and transport measurements in BaSn$_{1-x}$Pb$_x$O$_3$ films. A sudden suppression of the conductivity and an enhancement of the weak antilocalization effect at $x$ = 0.9 indicate the presence of a singular point in the electronic structure as a signature of the band inversion. Our findings provide an intriguing platform for combining topological aspects and electron correlation in perovskite oxides based on band-gap engineering.
The characteristics of topological insulators are manifested in both their surface and bulk properties, but the latter remain to be explored. Here we report bulk signatures of pressure-induced band inversion and topological phase transitions in Pb$_{1-x}$Sn$_x$Se ($x=$0.00, 0.15, and 0.23). The results of infrared measurements as a function of pressure indicate the closing and the reopening of the band gap as well as a maximum in the free carrier spectral weight. The enhanced density of states near the band gap in the topological phase give rise to a steep interband absorption edge. The change of density of states also yields a maximum in the pressure dependence of the Fermi level. Thus our conclusive results provide a consistent picture of pressure-induced topological phase transitions and highlight the bulk origin of the novel properties in topological insulators.
The recently discovered three dimensional or bulk topological insulators are expected to exhibit exotic quantum phenomena. It is believed that a trivial insulator can be twisted into a topological state by modulating the spin-orbit interaction or the crystal lattice via odd number of band