Do you want to publish a course? Click here

Switching of band inversion and topological surface states by charge density wave

110   0   0.0 ( 0 )
 Added by Natsuki Mitsuishi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topologically nontrivial materials host protected edge states associated with the bulk band inversion through the bulk-edge correspondence. Manipulating such edge states is highly desired for developing new functions and devices practically using their dissipation-less nature and spin-momentum locking. Here we introduce a transition-metal dichalcogenide VTe$_2$, that hosts a charge density wave (CDW) coupled with the band inversion involving V3$d$ and Te5$p$ orbitals. Spin- and angle-resolved photoemission spectroscopy with first-principles calculations reveal the huge anisotropic modification of the bulk electronic structure by the CDW formation, accompanying the selective disappearance of Dirac-type spin-polarized topological surface states that exist in the normal state. Thorough three dimensional investigation of bulk states indicates that the corresponding band inversion at the Brillouin zone boundary dissolves upon CDW formation, by transforming into anomalous flat bands. Our finding provides a new insight to the topological manipulation of matters by utilizing CDWs flexible characters to external stimuli.



rate research

Read More

Nanophononics is essential for the engineering of thermal transport in nanostructured electronic devices, it greatly facilitates the manipulation of mechanical resonators in the quantum regime, and could unveil a new route in quantum communications using phonons as carriers of information. Acoustic phonons also constitute a versatile platform for the study of fundamental wave dynamics, including Bloch oscillations, Wannier Stark ladders and other localization phenomena. Many of the phenomena studied in nanophononics were indeed inspired by their counterparts in optics and electronics. In these fields, the consideration of topological invariants to control wave dynamics has already had a great impact for the generation of robust confined states. Interestingly, the use of topological phases to engineer nanophononic devices remains an unexplored and promising field. Conversely, the use of acoustic phonons could constitute a rich platform to study topological states. Here, we introduce the concept of topological invariants to nanophononics and experimentally implement a nanophononic system supporting a robust topological interface state at 350 GHz. The state is constructed through band inversion, i.e. by concatenating two semiconductor superlattices with inverted spatial mode symmetries. The existence of this state is purely determined by the Zak phases of the constituent superlattices, i.e. that one-dimensional Berry phase. We experimentally evidenced the mode through Raman spectroscopy. The reported robust topological interface states could become part of nanophononic devices requiring resonant structures such as sensors or phonon lasers.
A charge density wave (CDW) of a nonzero ordering vector $mathbf{q}$ couple electronic states at $mathbf{k}$ and $mathbf{k}+mathbf{q}$ statically, giving rise to a reduced Brillouin zone (RBZ) due to the band folding effect. Its structure, in terms of an irreducible representation of the little group of $mathbf{q}$, would change the symmetry of the system and electronic structure accompanying possible change of band inversion, offering a chance of the topological phase transition. Monolayer 1textit{T}-TiSe$_2$ is investigated for it shows an unconventional CDW phase having a triple-$q$ $M_1^-$ structure. Moreover, the coupling between the triple-$q$ component of the $M_1^-$ CDW will inevitably produce a small $M_1^+$ CDW. The CDW yields a band inversion in 1textit{T}-TiSe$_2$ but different types of CDW can affect the electronic structure and system topology differently. The impact of CDW of different types was studied by utilizing a symmetrization-antisymmetrization technique to extract the $M_1^-$ and $M_1^+$ CDW contributions in the DFT-based tight-binding model and study their effects. The results are consistent with the parity consideration, improving understanding of topology for a CDW system with and without parity.
We use scanning tunneling microscopy (STM) to study charge density wave (CDW) states in the rare-earth di-telluride, CeTe$_{2}$. In contrast to previous experimental and first-principles studies of the rare-earth di-tellurides, our STM measurements surprisingly detect a unidirectional CDW with $textit{q}$ ~ 0.28 $textit{a}$*, which is very close to what is found in experimental measurements of the related rare-earth tri-tellurides. Furthermore, in the vicinity of an extended sub-surface defect, we find spatially-separated as well as spatially-coexisting unidirectional CDWs at the surface of CeTe$_{2}$. We quantify the nanoscale strain and its variations induced by this defect, and establish a correlation between local lattice strain and the locally-established CDW states. Our measurements probe the fundamental properties of a weakly-bound two-dimensional Te-sheet, which experimental and theoretical work has previously established as the fundamental component driving much of the essential physics in both the rare-earth di- and tri-telluride compounds.
Topological physics and strong electron-electron correlations in quantum materials are typically studied independently. However, there have been rapid recent developments in quantum materials in which topological phase transitions emerge when the single-particle band structure is modified by strong interactions. We here demonstrate that the room-temperature phase of (TaSe$_4$)$_2$I is a Weyl semimetal with 24 pairs of Weyl nodes. Owing to its quasi-1D structure, (TaSe$_4$)$_2$I hosts an established CDW instability just below room temperature. Using X-ray diffraction, angle-resolved photoemission spectroscopy, and first-principles calculations, we find that the CDW in (TaSe$_4$)$_2$I couples the bulk Weyl points and opens a band gap. The correlation-driven topological phase transition in (TaSe$_4$)$_2$I provides a route towards observing condensed-matter realizations of axion electrodynamics in the gapped regime, topological chiral response effects in the semimetallic phase, and represents an avenue for exploring the interplay of correlations and topology in a solid-state material.
Despite the progress made in successful prediction of many classes of weakly-correlated topological materials, it is not clear how a topological order can emerge from interacting orders and whether or not a charge ordered topological state can exist in a two-dimensional (2D) material. Here, through first-principles modeling and analysis, we identify a 2$times$2 charge density wave (CDW) phase in monolayer $2H$-NbSe$_2$ that harbors coexisting quantum spin Hall (QSH) insulator, topological crystalline insulator (TCI) and topological nodal line (TNL) semimetal states. The topology in monolayer NbSe$_2$ is driven by the formation of the CDW and the associated symmetry-breaking periodic lattice distortions and not via a pre-existing topology. Our finding of an emergent triple-topological state in monolayer $2H$-NbSe$_2$ will offer novel possibilities for exploring connections between different topologies and a unique materials platform for controllable CDW-induced topological states for potential applications in quantum electronics and spintronics and Majorana-based quantum computing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا