Do you want to publish a course? Click here

Superconducting proximity effect in InAsSb surface quantum wells with in-situ Al contact

436   0   0.0 ( 0 )
 Added by Javad Shabani
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate robust superconducting proximity effect in InAs$_{0.5}$Sb$_{0.5}$ quantum wells grown with epitaxial Al contact, which has important implications for mesoscopic and topological superconductivity. Unlike more commonly studied InAs and InSb semiconductors, bulk InAs$_{0.5}$Sb$_{0.5}$ supports stronger spin-orbit coupling and larger $g$-factor. However, these potentially desirable properties have not been previously measured in epitaxial heterostructures with superconductors, which could serve as a platform for fault-tolerant topological quantum computing. Through structural and transport characterization we observe high-quality interfaces and strong spin-orbit coupling. We fabricate Josephson junctions based on InAs$_{0.5}$Sb$_{0.5}$ quantum wells and observe strong proximity effect. These junctions exhibit product of normal resistance and critical current, $I_{c}R_{N} = SI{270}{micro V}$, and excess current, $I_{ex}R_{N} = SI{200}{micro V}$ at contact separations of 500~nm. Both of these quantities demonstrate a robust and long-range proximity effect with highly-transparent contacts.



rate research

Read More

Semiconductor-based Josephson junctions provide a platform for studying proximity effect due to the possibility of tuning junction properties by gate voltage and large-scale fabrication of complex Josephson circuits. Recently Josephson junctions using InAs weak link with epitaxial aluminum contact have improved the product of normal resistance and critical current, $I_cR_N$, in addition to fabrication process reliability. Here we study similar devices with epitaxial contact and find large supercurrent and substantial product of $I_cR_N$ in our junctions. However we find a striking difference when we compare these samples with higher mobility samples in terms of product of excess current and normal resistance, $I_{ex}R_N$. The excess current is negligible in lower mobility devices while it is substantial and independent of gate voltage and junction length in high mobility samples. This indicates that even though both sample types have epitaxial contacts only the high-mobility one has a high transparency interface. In the high mobility short junctions, we observe values of $I_cR_N/Delta sim 2.2$ and $I_{ex}R_N/Delta sim 1.5$ in semiconductor weak links.
Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped Al$_x$Ga$_{1-x}$As/GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the Al$_x$Ga$_{1-x}$As barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the Al$_x$Ga$_{1-x}$As barrier beneath the QW is increased, which we attribute to the surface segregation of Oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking.
Understanding the spatial distribution of charge carriers in III-V nanowires proximity coupled to superconductors is important for the design and interpretation of experiments based on hybrid quantum devices. In this letter, the gate-dependent surface accumulation layer of InAsSb/Al nanowires was studied by means of Andreev interference in a parallel magnetic field. Both uniform hybrid nanowires and devices featuring a short Josephson junction fabricated by shadow lithography, exhibited periodic modulation of the switching current. The period corresponds to a flux quantum through the nanowire diameter and is consistent with Andreev bound states occupying a cylindrical surface accumulation layer. The spatial distribution was tunable by a gate potential as expected from electrostatic models.
We study the superconducting proximity effect in a quantum wire with broken time-reversal (TR) symmetry connected to a conventional superconductor. We consider the situation of a strong TR-symmetry breaking, so that Cooper pairs entering the wire from the superconductor are immediately destroyed. Nevertheless, some traces of the proximity effect survive: for example, the local electronic density of states (LDOS) is influenced by the proximity to the superconductor, provided that localization effects are taken into account. With the help of the supersymmetric sigma model, we calculate the average LDOS in such a system. The LDOS in the wire is strongly modified close to the interface with the superconductor at energies near the Fermi level. The relevant distances from the interface are of the order of the localization length, and the size of the energy window around the Fermi level is of the order of the mean level spacing at the localization length. Remarkably, the sign of the effect is sensitive to the way the TR symmetry is broken: In the spin-symmetric case (orbital magnetic field), the LDOS is depleted near the Fermi energy, whereas for the broken spin symmetry (magnetic impurities), the LDOS at the Fermi energy is enhanced.
We study Andreev reflection in a ballistic one-dimensional channel coupled in parallel to a superconductor via a tunnel barrier of finite length $L$. The dependence of the low-energy Andreev reflection probability $R_A$ on $L$ reveals the existence of a characteristic length scale $xi_N$ beyond which $R_A(L)$ is enhanced up to unity despite the low interfacial transparency. The Andreev reflection enhancement is due to the strong mixing of particle and hole states that builds up in contacts exceeding the coherence length $xi_N$, leading to a small energy gap (minigap) in the density of states of the normal system. The role of the geometry of such hybrid contacts is discussed in the context of the experimental observation of zero-bias Andreev anomalies in the resistance of extended carbon nanotube/superconductor junctions in field effect transistor setups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا