Do you want to publish a course? Click here

Surface segregation and the Al problem in GaAs quantum wells

55   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped Al$_x$Ga$_{1-x}$As/GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the Al$_x$Ga$_{1-x}$As barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the Al$_x$Ga$_{1-x}$As barrier beneath the QW is increased, which we attribute to the surface segregation of Oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking.



rate research

Read More

We demonstrate robust superconducting proximity effect in InAs$_{0.5}$Sb$_{0.5}$ quantum wells grown with epitaxial Al contact, which has important implications for mesoscopic and topological superconductivity. Unlike more commonly studied InAs and InSb semiconductors, bulk InAs$_{0.5}$Sb$_{0.5}$ supports stronger spin-orbit coupling and larger $g$-factor. However, these potentially desirable properties have not been previously measured in epitaxial heterostructures with superconductors, which could serve as a platform for fault-tolerant topological quantum computing. Through structural and transport characterization we observe high-quality interfaces and strong spin-orbit coupling. We fabricate Josephson junctions based on InAs$_{0.5}$Sb$_{0.5}$ quantum wells and observe strong proximity effect. These junctions exhibit product of normal resistance and critical current, $I_{c}R_{N} = SI{270}{micro V}$, and excess current, $I_{ex}R_{N} = SI{200}{micro V}$ at contact separations of 500~nm. Both of these quantities demonstrate a robust and long-range proximity effect with highly-transparent contacts.
Negative longitudinal magnetoresistances (NLMRs) have been recently observed in a variety of topological materials and often considered to be associated with Weyl fermions that have a defined chirality. Here we report NLMRs in non-Weyl GaAs quantum wells. In the absence of a magnetic field the quantum wells show a transition from semiconducting-like to metallic behaviour with decreasing temperature. We observed pronounced NLMRs up to 9 Tesla at temperatures above the transition and weak NLMRs in low magnetic fields at temperatures close to the transition and below 5 K. The observed NLMRs show various types of magnetic field behaviour resembling those reported in topological materials. We attribute them to microscopic disorder and use a phenomenological three-resistor model to account for their various features. Our results showcase a new contribution of microscopic disorder in the occurrence of novel phenomena. They may stimulate further work on tuning electronic properties via disorder/defect nano-engineering.
554 - M. Q. Weng , M. W. Wu 2013
We present a microscopic theory for transport of the spin polarized charge density wave with both electrons and holes in the $(111)$ GaAs quantum wells. We analytically show that, contradicting to the commonly accepted belief, the spin and charge motions are bound together only in the fully polarized system but can be separated in the case of low spin polarization or short spin lifetime even when the spatial profiles of spin density wave and charge density wave overlap with each other. We further show that, the Coulomb drag between electrons and holes can markedly enhance the hole spin diffusion if the hole spin motion can be separated from the charge motion. In the high spin polarized system, the Coulomb drag can boost the hole spin diffusion coefficient by more than one order of magnitude.
102 - X. Fu , A. Riedl , M. Borisov 2019
Low-temperature illumination of a two-dimensional electron gas in GaAs quantum wells is known to greatly improve the quality of high-field magnetotransport. The improvement is known to occur even when the carrier density and mobility remain unchanged, but what exactly causes it remains unclear. Here, we investigate the effect of illumination on microwave photoresistance in low magnetic fields. We find that the amplitude of microwave-induced resistance oscillations grows dramatically after illumination. Dingle analysis reveals that this growth reflects a substantial increase in the single-particle (quantum) lifetime, which likely originates from the light-induced redistribution of charge enhancing the screening capability of the doping layers.
131 - X. Fu , Q. Shi , M. A. Zudov 2019
We report on quantum Hall stripes (QHSs) formed in higher Landau levels of GaAs/AlGaAs quantum wells with high carrier density ($n_e > 4 times 10^{11}$ cm$^{-2}$) which is expected to favor QHS orientation along unconventional $left < 1bar{1}0 right >$ crystal axis and along the in-plane magnetic field $B_{||}$. Surprisingly, we find that at $B_{||} = 0$ QHSs in our samples are aligned along $left < 110 right >$ direction and can be reoriented only perpendicular to $B_{||}$. These findings suggest that high density alone is not a decisive factor for either abnormal native QHS orientation or alignment with respect to $B_{||}$, while quantum confinement of the 2DEG likely plays an important role.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا