Do you want to publish a course? Click here

IntersectGAN: Learning Domain Intersection for Generating Images with Multiple Attributes

97   0   0.0 ( 0 )
 Added by Zehui Yao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Generative adversarial networks (GANs) have demonstrated great success in generating various visual content. However, images generated by existing GANs are often of attributes (e.g., smiling expression) learned from one image domain. As a result, generating images of multiple attributes requires many real samples possessing multiple attributes which are very resource expensive to be collected. In this paper, we propose a novel GAN, namely IntersectGAN, to learn multiple attributes from different image domains through an intersecting architecture. For example, given two image domains $X_1$ and $X_2$ with certain attributes, the intersection $X_1 cap X_2$ denotes a new domain where images possess the attributes from both $X_1$ and $X_2$ domains. The proposed IntersectGAN consists of two discriminators $D_1$ and $D_2$ to distinguish between generated and real samples of different domains, and three generators where the intersection generator is trained against both discriminators. And an overall adversarial loss function is defined over three generators. As a result, our proposed IntersectGAN can be trained on multiple domains of which each presents one specific attribute, and eventually eliminates the need of real sample images simultaneously possessing multiple attributes. By using the CelebFaces Attributes dataset, our proposed IntersectGAN is able to produce high quality face images possessing multiple attributes (e.g., a face with black hair and a smiling expression). Both qualitative and quantitative evaluations are conducted to compare our proposed IntersectGAN with other baseline methods. Besides, several different applications of IntersectGAN have been explored with promising results.



rate research

Read More

Generative Adversarial Networks are proved to be efficient on various kinds of image generation tasks. However, it is still a challenge if we want to generate images precisely. Many researchers focus on how to generate images with one attribute. But image generation under multiple attributes is still a tough work. In this paper, we try to generate a variety of face images under multiple constraints using a pipeline process. The Pip-GAN (Pipeline Generative Adversarial Network) we present employs a pipeline network structure which can generate a complex facial image step by step using a neutral face image. We applied our method on two face image databases and demonstrate its ability to generate convincing novel images of unseen identities under multiple conditions previously.
Existing interactive visualization tools for deep learning are mostly applied to the training, debugging, and refinement of neural network models working on natural images. However, visual analytics tools are lacking for the specific application of x-ray image classification with multiple structural attributes. In this paper, we present an interactive system for domain scientists to visually study the multiple attributes learning models applied to x-ray scattering images. It allows domain scientists to interactively explore this important type of scientific images in embedded spaces that are defined on the model prediction output, the actual labels, and the discovered feature space of neural networks. Users are allowed to flexibly select instance images, their clusters, and compare them regarding the specified visual representation of attributes. The exploration is guided by the manifestation of model performance related to mutual relationships among attributes, which often affect the learning accuracy and effectiveness. The system thus supports domain scientists to improve the training dataset and model, find questionable attributes labels, and identify outlier images or spurious data clusters. Case studies and scientists feedback demonstrate its functionalities and usefulness.
The high dimensionality of images presents architecture and sampling-efficiency challenges for likelihood-based generative models. Previous approaches such as VQ-VAE use deep autoencoders to obtain compact representations, which are more practical as inputs for likelihood-based models. We present an alternative approach, inspired by common image compression methods like JPEG, and convert images to quantized discrete cosine transform (DCT) blocks, which are represented sparsely as a sequence of DCT channel, spatial location, and DCT coefficient triples. We propose a Transformer-based autoregressive architecture, which is trained to sequentially predict the conditional distribution of the next element in such sequences, and which scales effectively to high resolution images. On a range of image datasets, we demonstrate that our approach can generate high quality, diverse images, with sample metric scores competitive with state of the art methods. We additionally show that simple modifications to our method yield effective image colorization and super-resolution models.
We present a method for recovering the shared content between two visual domains as well as the content that is unique to each domain. This allows us to map from one domain to the other, in a way in which the content that is specific for the first domain is removed and the content that is specific for the second is imported from any image in the second domain. In addition, our method enables generation of images from the intersection of the two domains as well as their union, despite having no such samples during training. The method is shown analytically to contain all the sufficient and necessary constraints. It also outperforms the literature methods in an extensive set of experiments. Our code is available at https://github.com/sagiebenaim/DomainIntersectionDifference.
We propose a new method for cancer subtype classification from histopathological images, which can automatically detect tumor-specific features in a given whole slide image (WSI). The cancer subtype should be classified by referring to a WSI, i.e., a large-sized image (typically 40,000x40,000 pixels) of an entire pathological tissue slide, which consists of cancer and non-cancer portions. One difficulty arises from the high cost associated with annotating tumor regions in WSIs. Furthermore, both global and local image features must be extracted from the WSI by changing the magnifications of the image. In addition, the image features should be stably detected against the differences of staining conditions among the hospitals/specimens. In this paper, we develop a new CNN-based cancer subtype classification method by effectively combining multiple-instance, domain adversarial, and multi-scale learning frameworks in order to overcome these practical difficulties. When the proposed method was applied to malignant lymphoma subtype classifications of 196 cases collected from multiple hospitals, the classification performance was significantly better than the standard CNN or other conventional methods, and the accuracy compared favorably with that of standard pathologists.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا