Do you want to publish a course? Click here

Generating Images with Sparse Representations

89   0   0.0 ( 0 )
 Added by Charlie Nash
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The high dimensionality of images presents architecture and sampling-efficiency challenges for likelihood-based generative models. Previous approaches such as VQ-VAE use deep autoencoders to obtain compact representations, which are more practical as inputs for likelihood-based models. We present an alternative approach, inspired by common image compression methods like JPEG, and convert images to quantized discrete cosine transform (DCT) blocks, which are represented sparsely as a sequence of DCT channel, spatial location, and DCT coefficient triples. We propose a Transformer-based autoregressive architecture, which is trained to sequentially predict the conditional distribution of the next element in such sequences, and which scales effectively to high resolution images. On a range of image datasets, we demonstrate that our approach can generate high quality, diverse images, with sample metric scores competitive with state of the art methods. We additionally show that simple modifications to our method yield effective image colorization and super-resolution models.



rate research

Read More

Generation of high-quality person images is challenging, due to the sophisticated entanglements among image factors, e.g., appearance, pose, foreground, background, local details, global structures, etc. In this paper, we present a novel end-to-end framework to generate realistic person images based on given person poses and appearances. The core of our framework is a novel generator called Appearance-aware Pose Stylizer (APS) which generates human images by coupling the target pose with the conditioned person appearance progressively. The framework is highly flexible and controllable by effectively decoupling various complex person image factors in the encoding phase, followed by re-coupling them in the decoding phase. In addition, we present a new normalization method named adaptive patch normalization, which enables region-specific normalization and shows a good performance when adopted in person image generation model. Experiments on two benchmark datasets show that our method is capable of generating visually appealing and realistic-looking results using arbitrary image and pose inputs.
This paper addresses the problem of 3D face recognition using simultaneous sparse approximations on the sphere. The 3D face point clouds are first aligned with a novel and fully automated registration process. They are then represented as signals on the 2D sphere in order to preserve depth and geometry information. Next, we implement a dimensionality reduction process with simultaneous sparse approximations and subspace projection. It permits to represent each 3D face by only a few spherical functions that are able to capture the salient facial characteristics, and hence to preserve the discriminant facial information. We eventually perform recognition by effective matching in the reduced space, where Linear Discriminant Analysis can be further activated for improved recognition performance. The 3D face recognition algorithm is evaluated on the FRGC v.1.0 data set, where it is shown to outperform classical state-of-the-art solutions that work with depth images.
Superpixel algorithms are a common pre-processing step for computer vision algorithms such as segmentation, object tracking and localization. Many superpixel methods only rely on colors features for segmentation, limiting performance in low-contrast regions and applicability to infrared or medical images where object boundaries have wide appearance variability. We study the inclusion of deep image features in the SLIC superpixel algorithm to exploit higher-level image representations. In addition, we devise a trainable superpixel algorithm, yielding an intermediate domain-specific image representation that can be applied to different tasks. A clustering-based superpixel algorithm is transformed into a pixel-wise classification task and superpixel training data is derived from semantic segmentation datasets. Our results demonstrate that this approach is able to improve superpixel quality consistently.
Generative adversarial networks (GANs) have demonstrated great success in generating various visual content. However, images generated by existing GANs are often of attributes (e.g., smiling expression) learned from one image domain. As a result, generating images of multiple attributes requires many real samples possessing multiple attributes which are very resource expensive to be collected. In this paper, we propose a novel GAN, namely IntersectGAN, to learn multiple attributes from different image domains through an intersecting architecture. For example, given two image domains $X_1$ and $X_2$ with certain attributes, the intersection $X_1 cap X_2$ denotes a new domain where images possess the attributes from both $X_1$ and $X_2$ domains. The proposed IntersectGAN consists of two discriminators $D_1$ and $D_2$ to distinguish between generated and real samples of different domains, and three generators where the intersection generator is trained against both discriminators. And an overall adversarial loss function is defined over three generators. As a result, our proposed IntersectGAN can be trained on multiple domains of which each presents one specific attribute, and eventually eliminates the need of real sample images simultaneously possessing multiple attributes. By using the CelebFaces Attributes dataset, our proposed IntersectGAN is able to produce high quality face images possessing multiple attributes (e.g., a face with black hair and a smiling expression). Both qualitative and quantitative evaluations are conducted to compare our proposed IntersectGAN with other baseline methods. Besides, several different applications of IntersectGAN have been explored with promising results.
Superpixel segmentation has recently seen important progress benefiting from the advances in differentiable deep learning. However, the very high-resolution superpixel segmentation still remains challenging due to the expensive memory and computation cost, making the current advanced superpixel networks fail to process. In this paper, we devise Patch Calibration Networks (PCNet), aiming to efficiently and accurately implement high-resolution superpixel segmentation. PCNet follows the principle of producing high-resolution output from low-resolution input for saving GPU memory and relieving computation cost. To recall the fine details destroyed by the down-sampling operation, we propose a novel Decoupled Patch Calibration (DPC) branch for collaboratively augment the main superpixel generation branch. In particular, DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries. By sharing the parameters of DPC and main branches, the fine-detailed knowledge learned from high-resolution patches will be transferred to help calibrate the destroyed information. To the best of our knowledge, we make the first attempt to consider the deep-learning-based superpixel generation for high-resolution cases. To facilitate this research, we build evaluation benchmarks from two public datasets and one new constructed one, covering a wide range of diversities from fine-grained human parts to cityscapes. Extensive experiments demonstrate that our PCNet can not only perform favorably against the state-of-the-arts in the quantitative results but also improve the resolution upper bound from 3K to 5K on 1080Ti GPUs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا