No Arabic abstract
Existing interactive visualization tools for deep learning are mostly applied to the training, debugging, and refinement of neural network models working on natural images. However, visual analytics tools are lacking for the specific application of x-ray image classification with multiple structural attributes. In this paper, we present an interactive system for domain scientists to visually study the multiple attributes learning models applied to x-ray scattering images. It allows domain scientists to interactively explore this important type of scientific images in embedded spaces that are defined on the model prediction output, the actual labels, and the discovered feature space of neural networks. Users are allowed to flexibly select instance images, their clusters, and compare them regarding the specified visual representation of attributes. The exploration is guided by the manifestation of model performance related to mutual relationships among attributes, which often affect the learning accuracy and effectiveness. The system thus supports domain scientists to improve the training dataset and model, find questionable attributes labels, and identify outlier images or spurious data clusters. Case studies and scientists feedback demonstrate its functionalities and usefulness.
Generative adversarial networks (GANs) have demonstrated great success in generating various visual content. However, images generated by existing GANs are often of attributes (e.g., smiling expression) learned from one image domain. As a result, generating images of multiple attributes requires many real samples possessing multiple attributes which are very resource expensive to be collected. In this paper, we propose a novel GAN, namely IntersectGAN, to learn multiple attributes from different image domains through an intersecting architecture. For example, given two image domains $X_1$ and $X_2$ with certain attributes, the intersection $X_1 cap X_2$ denotes a new domain where images possess the attributes from both $X_1$ and $X_2$ domains. The proposed IntersectGAN consists of two discriminators $D_1$ and $D_2$ to distinguish between generated and real samples of different domains, and three generators where the intersection generator is trained against both discriminators. And an overall adversarial loss function is defined over three generators. As a result, our proposed IntersectGAN can be trained on multiple domains of which each presents one specific attribute, and eventually eliminates the need of real sample images simultaneously possessing multiple attributes. By using the CelebFaces Attributes dataset, our proposed IntersectGAN is able to produce high quality face images possessing multiple attributes (e.g., a face with black hair and a smiling expression). Both qualitative and quantitative evaluations are conducted to compare our proposed IntersectGAN with other baseline methods. Besides, several different applications of IntersectGAN have been explored with promising results.
Recent advances in differentiable rendering have sparked an interest in learning generative models of textured 3D meshes from image collections. These models natively disentangle pose and appearance, enable downstream applications in computer graphics, and improve the ability of generative models to understand the concept of image formation. Although there has been prior work on learning such models from collections of 2D images, these approaches require a delicate pose estimation step that exploits annotated keypoints, thereby restricting their applicability to a few specific datasets. In this work, we propose a GAN framework for generating textured triangle meshes without relying on such annotations. We show that the performance of our approach is on par with prior work that relies on ground-truth keypoints, and more importantly, we demonstrate the generality of our method by setting new baselines on a larger set of categories from ImageNet - for which keypoints are not available - without any class-specific hyperparameter tuning. We release our code at https://github.com/dariopavllo/textured-3d-gan
We propose a new approach for editing face images, which enables numerous exciting applications including face relighting, makeup transfer and face detail editing. Our face edits are based on a visual representation, which includes geometry, face segmentation, albedo, illumination and detail map. To recover our visual representation, we start by estimating geometry using a morphable face model, then decompose the face image to recover the albedo, and then shade the geometry with the albedo and illumination. The residual between our shaded geometry and the input image produces our detail map, which carries high frequency information that is either insufficiently or incorrectly captured by our shading process. By manipulating the detail map, we can edit face images with reality and identity preserved. Our representation allows various applications. First, it allows a user to directly manipulate various illumination. Second, it allows non-parametric makeup transfer with input faces distinctive identity features preserved. Third, it allows non-parametric modifications to the face appearance by transferring details. For face relighting and detail editing, we evaluate via a user study and our method outperforms other methods. For makeup transfer, we evaluate via an online attractiveness evaluation system, and can reliably make people look younger and more attractive. We also show extensive qualitative comparisons to existing methods, and have significant improvements over previous techniques.
Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A sketching interface is proposed for quickly and easily specifying the color correspondences between target and source image. The user can specify the correspondences of local region using scribes, which more accurately transfers the target color to the source image while smoothly preserving the boundaries, and exhibits more natural output results. Our algorithm is not restricted to one-to-one image color transfer and can make use of more than one target images to transfer the color in different regions in the source image. Moreover, our algorithm does not require to choose the same color style and image size between source and target images. We propose the sub-sampling to reduce the computational load. Comparing with other approaches, our algorithm is much better in color blending in the input data. Our approach preserves the other color details in the source image. Various experimental results show that our approach specifies the correspondences of local color region in source and target images. And it expresses the intention of users and generates more actual and natural results of visual effect.
Visual attributes constitute a large portion of information contained in a scene. Objects can be described using a wide variety of attributes which portray their visual appearance (color, texture), geometry (shape, size, posture), and other intrinsic properties (state, action). Existing work is mostly limited to study of attribute prediction in specific domains. In this paper, we introduce a large-scale in-the-wild visual attribute prediction dataset consisting of over 927K attribute annotations for over 260K object instances. Formally, object attribute prediction is a multi-label classification problem where all attributes that apply to an object must be predicted. Our dataset poses significant challenges to existing methods due to large number of attributes, label sparsity, data imbalance, and object occlusion. To this end, we propose several techniques that systematically tackle these challenges, including a base model that utilizes both low- and high-level CNN features with multi-hop attention, reweighting and resampling techniques, a novel negative label expansion scheme, and a novel supervised attribute-aware contrastive learning algorithm. Using these techniques, we achieve near 3.7 mAP and 5.7 overall F1 points improvement over the current state of the art. Further details about the VAW dataset can be found at http://vawdataset.com/.