No Arabic abstract
Over the past several decades, advances in telescope/detector technologies and deep imaging techniques have pushed surface brightness limits to ever fainter levels. We can now both detect and measure the diffuse, extended star light that surrounds galaxies and permeates galaxy clusters, enabling the study of galaxy halos, tidal streams, diffuse galaxy populations, and the assembly history of galaxies and galaxy clusters. With successes come new challenges, however, and pushing even deeper will require careful attention to systematic sources of error. In this review I highlight recent advances in the study of diffuse starlight in galaxies, and discuss challenges faced by the next generation of deep imaging campaigns.
We present a detection of 89 candidates of ultra-diffuse galaxies (UDGs) in a 4.9 degree$^2$ field centered on the Hickson Compact Group 95 (HCG 95) using deep $g$- and $r$-band images taken with the Chinese Near Object Survey Telescope. This field contains one rich galaxy cluster (Abell 2588 at $z$=0.199) and two poor clusters (Pegasus I at $z$=0.013 and Pegasus II at $z$=0.040). The 89 candidates are likely associated with the two poor clusters, giving about 50 $-$ 60 true UDGs with a half-light radius $r_{rm e} > 1.5$ kpc and a central surface brightness $mu(g,0) > 24.0$ mag arcsec$^{-2}$. Deep $z$-band images are available for 84 of the 89 galaxies from the Dark Energy Camera Legacy Survey (DECaLS), confirming that these galaxies have an extremely low central surface brightness. Moreover, our UDG candidates are spread over a wide range in $g-r$ color, and $sim$26% are as blue as normal star-forming galaxies, which is suggestive of young UDGs that are still in formation. Interestingly, we find that one UDG linked with HCG 95 is a gas-rich galaxy with H I mass $1.1 times 10^{9} M_{odot}$ detected by the Very Large Array, and has a stellar mass of $M_star sim 1.8 times 10^{8}$ $M_{odot}$. This indicates that UDGs at least partially overlap with the population of nearly dark galaxies found in deep H I surveys. Our results show that the high abundance of blue UDGs in the HCG 95 field is favored by the environment of poor galaxy clusters residing in H I-rich large-scale structures.
We use a stacking method to study the radial light profiles of luminous red galaxies (LRGs) at redshift $sim 0.62$ and $sim 0.25$, out to a radial range of 200 kpc. We do not find noticeable evolution of the profiles at the two redshifts. The LRG profiles appear to be well approximated by a single Sersic profile, although some excess light can be seen outside 60 kpc. We quantify the excess light by measuring the integrated flux and find that the excess is about 10% -- a non-dominant but still nonnegligible component.
Diffuse intracluster light (ICL) has now been observed in nearby and in intermediate redshift clusters. Individual intracluster stars have been detected in the Virgo and Coma clusters and the first color-magnitude diagram and velocity measurements have been obtained. Recent studies show that the ICL contains of the order of 10% and perhaps up to 30% of the stellar mass in the cluster, but in the cores of some dense and rich clusters like Coma, the local ICL fraction can be high as 40%-50%. What can we learn from the ICL about the formation of galaxy clusters and the evolution of cluster galaxies? How and when did the ICL form? What is the connection to the central brightest cluster galaxy? Cosmological N-body and hydrodynamical simulations are beginning to make predictions for the kinematics and origin of the ICL. The ICL traces the evolution of baryonic substructures in dense environments and can thus be used to constrain some aspects of cosmological simulations that are most uncertain, such as the modeling of star formation and the mass distribution of the baryonic component in galaxies.
We present an analysis of archival {it HST/ACS} imaging in the F475W ($g_{475}$), F606W ($V_{606}$) and F814W ($I_{814}$) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5$sigma$ completeness limit of the imaging ($I_{814}=$27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of $27pm5$ and a $V$-band specific frequency, $S_N=28pm5$. Based on comparisons to the GC systems of Local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter dominated dwarf galaxy with virial mass $sim0.9times10^{10}$~msun and a dark-to-stellar mass ratio, $M_{vir} / M_{ star}sim 1000$. Based on the stellar mass-growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky Way-like system, but is more similar to quenched Large Magellanic Cloud-like systems. We find that the mean color of GC population, $g_{475}-I_{814}$ = $0.91pm0.05$ mag, coincides with the peak of the color distribution of intracluster GCs and are also similar to those of the blue GCs in the outer regions of massive galaxies. We suggest that both the intracluster GC population in Coma and the blue-peak in the GC populations of massive galaxies may be fed - at least in part - by the disrupted equivalents of systems such as DF17.
Constraining dynamo theories of magnetic field origin by observation is indispensable but challenging, in part because the basic quantities measured by observers and predicted by modelers are different. We clarify these differences and sketch out ways to bridge the divide. Based on archival and previously unpublished data, we then compile various important properties of galactic magnetic fields for nearby spiral galaxies. We consistently compute strengths of total, ordered, and regular fields, pitch angles of ordered and regular fields, and we summarize the present knowledge on azimuthal modes, field parities, and the properties of non-axisymmetric spiral features called magnetic arms. We review related aspects of dynamo theory, with a focus on mean-field models and their predictions for large-scale magnetic fields in galactic discs and halos. Further, we measure the velocity dispersion of HI gas in arm and inter-arm regions in three galaxies, M 51, M 74, and NGC 6496, since spiral modulation of the root-mean-square turbulent speed has been proposed as a driver of non-axisymmetry in large-scale dynamos. We find no evidence for such a modulation and place upper limits on its strength, helping to narrow down the list of mechanisms to explain magnetic arms. Successes and remaining challenges of dynamo models with respect to explaining observations are briefly summarized, and possible strategies are suggested. With new instruments like the Square Kilometre Array (SKA), large data sets of magnetic and non-magnetic properties from thousands of galaxies will become available, to be compared with theory.