No Arabic abstract
We present a detection of 89 candidates of ultra-diffuse galaxies (UDGs) in a 4.9 degree$^2$ field centered on the Hickson Compact Group 95 (HCG 95) using deep $g$- and $r$-band images taken with the Chinese Near Object Survey Telescope. This field contains one rich galaxy cluster (Abell 2588 at $z$=0.199) and two poor clusters (Pegasus I at $z$=0.013 and Pegasus II at $z$=0.040). The 89 candidates are likely associated with the two poor clusters, giving about 50 $-$ 60 true UDGs with a half-light radius $r_{rm e} > 1.5$ kpc and a central surface brightness $mu(g,0) > 24.0$ mag arcsec$^{-2}$. Deep $z$-band images are available for 84 of the 89 galaxies from the Dark Energy Camera Legacy Survey (DECaLS), confirming that these galaxies have an extremely low central surface brightness. Moreover, our UDG candidates are spread over a wide range in $g-r$ color, and $sim$26% are as blue as normal star-forming galaxies, which is suggestive of young UDGs that are still in formation. Interestingly, we find that one UDG linked with HCG 95 is a gas-rich galaxy with H I mass $1.1 times 10^{9} M_{odot}$ detected by the Very Large Array, and has a stellar mass of $M_star sim 1.8 times 10^{8}$ $M_{odot}$. This indicates that UDGs at least partially overlap with the population of nearly dark galaxies found in deep H I surveys. Our results show that the high abundance of blue UDGs in the HCG 95 field is favored by the environment of poor galaxy clusters residing in H I-rich large-scale structures.
Deep $B$ and $R$ images of three Hickson Compact Groups, HCG 79, HCG 88 and HCG 95, were analyzed using a new wavelet technic to measure possible intra-group diffuse light present in these systems. The method used, OV_WAV, is a wavelet technic particularly suitable to detect low-surface brightness extended structures, down to a $S/N = 0.1$ per pixel, which corresponds to a 5-$sigma$-detection level in wavelet space. The three groups studied are in different evolutionary stages, as can be judged by their very different fractions of the total light contained in their intra-group halos: $46pm11$% for HCG 79 and $11pm26$% for HCG 95, in the $B$ band, and HCG 88 had no component detected down to a limiting surface brightness of $29.1 B mag arcsec^{-2}$. For HCG 95 the intra-group light is red, similar to the mean colors of the group galaxies themselves, suggesting that it is formed by an old population with no significant on-going star formation. For HCG 79, however, the intra-group material has significantly bluer color than the mean color of the group galaxies, suggesting that the diffuse light may, at least in part, come from stripping of dwarf galaxies which dissolved into the group potential well.
Over the past several decades, advances in telescope/detector technologies and deep imaging techniques have pushed surface brightness limits to ever fainter levels. We can now both detect and measure the diffuse, extended star light that surrounds galaxies and permeates galaxy clusters, enabling the study of galaxy halos, tidal streams, diffuse galaxy populations, and the assembly history of galaxies and galaxy clusters. With successes come new challenges, however, and pushing even deeper will require careful attention to systematic sources of error. In this review I highlight recent advances in the study of diffuse starlight in galaxies, and discuss challenges faced by the next generation of deep imaging campaigns.
Context. In this paper we present ultra deep images of the compact group of galaxies HCG 86 as part of the VEGAS survey. Aims. Our main goals are to estimate the amount of intragroup light (IGL), to study the light and color distributions in order to address the main formation process of the IGL component in groups of galaxies. Methods. We derived the azimuthally averaged surface brightness profiles in the g,r and i bands with g - r and r - i average colors and color profiles for all group members. By fitting the light distribution, we have extrapolated the contribution of the stellar halos plus the diffuse light from the brightest component of each galaxy. The results are compared with theoretical predictions. Results. The long integration time and wide area covered make our data deeper than previous literature studies of the IGL in compact groups of galaxies and allow us to produce an extended (~160 kpc) map of the IGL, down to a surface brightness level of about 30 mag/arcsec^2 in the g band. The IGL in HCG 86 is mainly in diffuse form and has average colors of g - r ~ 0.8 mag and r - i ~ 0.4 mag. The fraction of IGL in HCG 86 is ~ 16% of the total luminosity of the group, and this is consistent with estimates available for other compact groups and loose groups of galaxies of similar virial masses. A weak trend is present between the amount of IGL and the early-type to late-type galaxy ratio. Conclusions. By comparing the IGL fraction and colors with those predicted by simulations, the amount of IGL in HCG 86 would be the result of the disruption of satellites at an epoch of z ~ 0.4. At this redshift, observed colors are consistent with the scenario where the main contribution to the mass of the IGL comes from the intermediate-massive galaxies.
Ultra-diffuse galaxies have generated significant interest due to their large optical extents and low optical surface brightnesses, which challenge galaxy formation models. Here we present resolved synthesis observations of 12 HI-bearing ultra-diffuse galaxies (HUDs) from the Karl G. Jansky Very Large Array (VLA), as well as deep optical imaging from the WIYN 3.5-meter telescope at Kitt Peak National Observatory. We present the data processing and images, including total intensity HI maps and HI velocity fields. The HUDs show ordered gas distributions and evidence of rotation, important prerequisites for the detailed kinematic models in Mancera Pi~na et al. (2019b). We compare the HI and stellar alignment and extent, and find the HI extends beyond the already extended stellar component and that the HI disk is often misaligned with respect to the stellar one, emphasizing the importance of caution when approaching inclination measurements for these extreme sources. We explore the HI mass-diameter scaling relation, and find that although the HUDs have diffuse stellar populations, they fall along the relation, with typical global HI surface densities. This resolved sample forms an important basis for more detailed study of the HI distribution in this extreme extragalactic population.
This continuing study of intragroup light in compact groups of galaxies aims to establish new constraints to models of formation and evolution of galaxy groups, specially of compact groups, which are a key part in the evolution of larger structures, such as clusters. In this paper we present three additional groups (HCG 15, 35 and 51) using deep wide field $B$ and $R$ band images observed with the LAICA camera at the 3.5m telescope at the Calar Alto observatory (CAHA). This instrument provides us with very stable flatfielding, a mandatory condition for reliably measuring intragroup diffuse light. The images were analyzed with the OV_WAV package, a wavelet technique that allows us to uncover the intragroup component in an unprecedented way. We have detected that 19, 15 and 26% of the total light of HCG 15, 35 and 51, respectively, is in the diffuse component, with colours that are compatible with old stellar populations and with mean surface brightness that can be as low as $28.4 {rm B mag arcsec^{-2}}$. Dynamical masses, crossing times and mass to light ratios were recalculated using the new group parameters. Also tidal features were analyzed using the wavelet technique.