Do you want to publish a course? Click here

Synthesizing Observations and Theory to Understand Galactic Magnetic Fields: Progress and Challenges

54   0   0.0 ( 0 )
 Added by Rainer Beck
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Constraining dynamo theories of magnetic field origin by observation is indispensable but challenging, in part because the basic quantities measured by observers and predicted by modelers are different. We clarify these differences and sketch out ways to bridge the divide. Based on archival and previously unpublished data, we then compile various important properties of galactic magnetic fields for nearby spiral galaxies. We consistently compute strengths of total, ordered, and regular fields, pitch angles of ordered and regular fields, and we summarize the present knowledge on azimuthal modes, field parities, and the properties of non-axisymmetric spiral features called magnetic arms. We review related aspects of dynamo theory, with a focus on mean-field models and their predictions for large-scale magnetic fields in galactic discs and halos. Further, we measure the velocity dispersion of HI gas in arm and inter-arm regions in three galaxies, M 51, M 74, and NGC 6496, since spiral modulation of the root-mean-square turbulent speed has been proposed as a driver of non-axisymmetry in large-scale dynamos. We find no evidence for such a modulation and place upper limits on its strength, helping to narrow down the list of mechanisms to explain magnetic arms. Successes and remaining challenges of dynamo models with respect to explaining observations are briefly summarized, and possible strategies are suggested. With new instruments like the Square Kilometre Array (SKA), large data sets of magnetic and non-magnetic properties from thousands of galaxies will become available, to be compared with theory.



rate research

Read More

In this white paper we introduce the IMAGINE Consortium and its scientific background, goals and structure. Our purpose is to coordinate and facilitate the efforts of a diverse group of researchers in the broad areas of the interstellar medium, Galactic magnetic fields and cosmic rays, and our goal is to develop more comprehensive insights into the structures and roles of interstellar magnetic fields and their interactions with cosmic rays. To achieve a higher level of self-consistency, depth and rigour can only be achieved by the coordinated efforts of experts in diverse areas of astrophysics involved in observational, theoretical and numerical work. We present our view of the present status of this topic, identify its key unsolved problems and suggest a strategy that will underpin our work. The backbone of the consortium is the Interstellar MAGnetic field INference Engine, a publicly available Bayesian platform that employs robust statistical methods to explore the multi-dimensional likelihood space using any number of modular inputs. It provides an interpretation and modelling framework that has the power and flexibility to include a variety of observational, theoretical and numerical lines of evidence into a self-consistent and comprehensive picture of the thermal and non-thermal interstellar media. An important innovation is that a consistent understanding of the phenomena that are directly or indirectly influenced by the Galactic magnetic field, such as the deflection of ultra-high energy cosmic rays or extragalactic backgrounds, is made an integral part of the modelling. The IMAGINE Consortium, which is informal by nature and open to new participants, hereby presents a methodological framework for the modelling and understanding of Galactic magnetic fields that is available to all communities whose research relies on a state-of-the-art solution to this problem. (Abridged.)
121 - D. J. Dean 2007
Nuclear theory today aims for a comprehensive theoretical framework that can describe all nuclei. I discuss recent progress in this pursuit and the associated challenges as we move forward.
Magnetic fields on a range of scales play a large role in the ecosystems of galaxies, both in the galactic disk and in the extended layers of gas away from the plane. Observing magnetic field strength, structure and orientation is complex, and necessarily indirect. Observational data of magnetic fields in the halo of the Milky Way are scarce, and non-conclusive about the large-scale structure of the field. In external galaxies, various large-scale configurations of magnetic fields are measured, but many uncertainties about exact configurations and their origin remain. There is a strong interaction between magnetic fields and other components in the interstellar medium such as ionized and neutral gas and cosmic rays. The energy densities of these components are comparable on large scales, indicating that magnetic fields are not passive tracers but that magnetic field feedback on the other interstellar medium components needs to be taken into account.
A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulent magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic fields strengths obtained for the satellite and central galaxy populations as well as the typical strength of the large-scale magnetic field in galaxies of different mass.
This review provides an overview of recent advances in multi-wavelength and multi-messenger observations of blazars, the current status of theoretical models for blazar emission, and prospects for future facilities. The discussion of observational results will focus on advances made possible through the Fermi Gamma-Ray Space Telescope and ground-based gamma-ray observatories (H.E.S.S., MAGIC, VERITAS) as well as the recent first evidence for a blazar being a source of IceCube neutrinos. The main focus of this review will be the discussion of our current theoretical understanding of blazar multi-wavelength and multi-messenger emission, in the spectral, time, and polarization domains. Future progress will be expected in particular through the development of the first X-ray polarimeter, IXPE, and the installation of the Cherenkov Telescope Array (CTA), both expected to become operational in the early to mid 2020s.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا