Do you want to publish a course? Click here

Diffuse Light in Galaxy Clusters

114   0   0.0 ( 0 )
 Added by Magda Arnaboldi Dr
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Diffuse intracluster light (ICL) has now been observed in nearby and in intermediate redshift clusters. Individual intracluster stars have been detected in the Virgo and Coma clusters and the first color-magnitude diagram and velocity measurements have been obtained. Recent studies show that the ICL contains of the order of 10% and perhaps up to 30% of the stellar mass in the cluster, but in the cores of some dense and rich clusters like Coma, the local ICL fraction can be high as 40%-50%. What can we learn from the ICL about the formation of galaxy clusters and the evolution of cluster galaxies? How and when did the ICL form? What is the connection to the central brightest cluster galaxy? Cosmological N-body and hydrodynamical simulations are beginning to make predictions for the kinematics and origin of the ICL. The ICL traces the evolution of baryonic substructures in dense environments and can thus be used to constrain some aspects of cosmological simulations that are most uncertain, such as the modeling of star formation and the mass distribution of the baryonic component in galaxies.



rate research

Read More

Using N-body simulations, we have modeled the production and evolution of low surface brightness, diffuse intra-cluster light (ICL) in galaxy clusters. By creating simulated observations of the clusters we have measured the evolution of the ICL luminosity throughout the dynamical history of the clusters. We find that ICL production tends to occur in short, discrete events, which correlate very strongly with strong, small-scale interactions and accretions between groups within the clusters.
[Abridged] In this paper, we carry out a detailed analysis of the performance of two different methods to identify the diffuse stellar light in cosmological hydrodynamical simulations of galaxy clusters. One method is based on a dynamical analysis of the stellar component. The second method is closer to techniques commonly employed in observational studies. Both the dynamical method and the method based on the surface brightness limit criterion are applied to the same set of hydrodynamical simulations for a large sample about 80 galaxy clusters. We find significant differences between the ICL and DSC fractions computed with the two corresponding methods, which amounts to about a factor of two for the AGN simulations, and a factor of four for the CSF set. We also find that the inclusion of AGN feedback boosts the DSC and ICL fractions by a factor of 1.5-2, respectively, while leaving the BCG+ICL and BCG+DSC mass fraction almost unchanged. The sum of the BCG and DSC mass stellar mass fraction is found to decrease from ~80 per cent in galaxy groups to ~60 per cent in rich clusters, thus in excess of what found from observational analysis. We identify the average surface brightness limits that yields the ICL fraction from the SBL method close to the DSC fraction from the dynamical method. These surface brightness limits turn out to be brighter in the CSF than in the AGN simulations. This is consistent with the finding that AGN feedback makes BCGs to be less massive and with shallower density profiles than in the CSF simulations. The BCG stellar component, as identified by both methods, are slightly older and more metal-rich than the stars in the diffuse component.
In a growing number of galaxy clusters diffuse extended radio sources have been found. These sources are not directly associated with individual cluster galaxies. The radio emission reveal the presence of cosmic rays and magnetic fields in the intracluster medium (ICM). We classify diffuse cluster radio sources into radio halos, cluster radio shocks (relics), and revived AGN fossil plasma sources. Radio halo sources can be further divided into giant halos, mini-halos, and possible `intermediate sources. Halos are generally positioned at cluster center and their brightness approximately follows the distribution of the thermal ICM. Cluster radio shocks (relics) are polarized sources mostly found in the clusters periphery. They trace merger induced shock waves. Revived fossil plasma sources are characterized by their radio steep-spectra and often irregular morphologies. In this review we give an overview of the properties of diffuse cluster radio sources, with an emphasis on recent observational results. We discuss the resulting implications for the underlying physical acceleration processes that operate in the ICM, the role of relativistic fossil plasma, and the properties of ICM shocks and magnetic fields. We also compile an updated list of diffuse cluster radio sources which will be available on-line http://galaxyclusters.com. We end this review with a discussion on the detection of diffuse radio emission from the cosmic web.
We present a study on the coherent rotation of the intracluster medium and dark matter components of simulated galaxy clusters extracted from a volume-limited sample of the MUSIC project. The set is re-simulated with three different recipes for the gas physics: $(i)$ non-radiative, $(ii)$ radiative without AGN feedback, and $(iii)$ radiative with AGN feedback. Our analysis is based on the 146 most massive clusters identified as relaxed, 57 per cent of the total sample. We classify these objects as rotating and non-rotating according to the gas spin parameter, a quantity that can be related to cluster observations. We find that 4 per cent of the relaxed sample is rotating according to our criterion. By looking at the radial profiles of their specific angular momentum vector, we find that the solid body model is not a suitable description of rotational motions. The radial profiles of the velocity of the dark matter show a prevalence of the random velocity dispersion. Instead, the intracluster medium profiles are characterized by a comparable contribution from the tangential velocity and the dispersion. In general, the dark matter component dominates the dynamics of the clusters, as suggested by the correlation between its angular momentum and the gas one, and by the lack of relevant differences among the three sets of simulations.
Non-thermal properties of galaxy clusters have been studied with detailed and deep radio images in comparison with X-ray data. While much progress has been made, most of the studied clusters are at a relatively low redshift (z < 0.3). We here investigate the evolutionary properties of the non-thermal cluster emission using two statistically complete samples at z > 0.3. We obtained short JVLA observations at L-band of the statistically complete sample of very X-ray luminous clusters from the Massive Cluster Survey (MACS) presented by Ebeling et al. (2010), and redshift range 0.3 - 0.5. We add to this list the complete sample of the 12 most distant MACS clusters (z > 0.5) presented in Ebeling et al. (2007). Most clusters show evidence of emission in the radio regime. We present the radio properties of all clusters in our sample and show images of newly detected diffuse sources. A radio halo is detected in 19 clusters, and five clusters contain a relic source. Most of the brightest cluster galaxies (BCG) in relaxed clusters show radio emission with powers typical of FRII radio galaxies, and some are surrounded by a radio mini-halo. The high frequency of radio emission from the BCG in relaxed clusters suggests that BCG feedback mechanisms are in place already at z about 0.6. The properties of radio halos and the small number of detected relics suggest redshift evolution in the properties of diffuse sources. The radio power (and size) of radio halos could be related to the number of past merger events in the history of the system. In this scenario, the presence of a giant and high-power radio halo is indicative of an evolved system with a large number of past major mergers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا