Do you want to publish a course? Click here

Uniform Decoherence Effect on Localizable Entanglement in Random Multi-qubit Pure States

298   0   0.0 ( 0 )
 Added by Amit Kumar Pal Dr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the patterns in distributions of localizable entanglement over a pair of qubits for random multi-qubit pure states. We observe that the mean of localizable entanglement increases gradually with increasing the number of qubits of random pure states while the standard deviation of the distribution decreases. The effects on the distributions, when the random pure multi-qubit states are subjected to local as well as global noisy channels, are also investigated. Unlike the noiseless scenario, the average value of the localizable entanglement remains almost constant with the increase in the number of parties for a fixed value of noise parameter. We also find out that the maximum strength of noise under which entanglement survives can be independent of the localizable entanglement content of the initial random pure states.



rate research

Read More

92 - L. Pereira , L. Zambrano , 2021
We introduce an inductive $n$-qubit pure-state estimation method. This is based on projective measurements on states of $2n+1$ separable bases or $2$ entangled bases plus the computational basis. Thus, the total number of measurement bases scales as $O(n)$ and $O(1)$, respectively. Thereby, the proposed method exhibits a very favorable scaling in the number of qubits when compared to other estimation methods. Monte Carlo numerical experiments show that the method can achieve a high estimation fidelity. For instance, an average fidelity of $0.88$ on the Hilbert space of $10$ qubits is achieved with $21$ separable bases. The use of separable bases makes our estimation method particularly well suited for applications in noisy intermediate-scale quantum computers, where entangling gates are much less accurate than local gates. We experimentally demonstrate the proposed method in one of IBMs quantum processors by estimating 4-qubit Greenberger-Horne-Zeilinger states with a fidelity close to $0.875$ via separable bases. Other $10$-qubit separable and entangled states achieve an estimation fidelity in the order of $0.85$ and $0.7$, respectively.
Employing the Pauli matrices, we have constructed a set of operators, which can be used to distinguish six inequivalent classes of entanglement under SLOCC (stochastic local operation and classical communication) for three-qubit pure states. These operators have very simple structure and can be obtained from the Mermins operator with suitable choice of directions. Moreover these operators may be implemented in an experiment to distinguish the types of entanglement present in a state. We show that the measurement of only one operator is sufficient to distinguish GHZ class from rest of the classes. It is also shown that it is possible to detect and classify other classes by performing a small number of measurements. We also show how to construct such observables in any basis. We also consider a few mixed states to investigate the usefulness of our operators. Furthermore, we consider the teleportation scheme of Lee et al. (Phys. Rev. A 72, 024302 (2005)) and show that the partial tangles and hence teleportation fidelity can be measured. We have also shown that these partial tangles can also be used to classify genuinely entangled state, biseparable state and separable state.
We investigate the decay of entanglement, due to decoherence, of multi-qubit systems that are initially prepared in highly (in some cases maximally) entangled states. We assume that during the decoherence processes each qubit of the system interacts with its own, independent environment. We determine, for systems with a small number of qubits and for various decoherence channels, the initial states exhibiting the most robust entanglement. We also consider a restricted version of this robustness optimization problem, only involving states equivalent under local unitary transformations to the |GHZ> state.
Entanglement swapping has played an important role in quantum information processing, and become one of the necessary core technologies in the future quantum network. In this paper, we study entanglement swapping for multi-particle pure states and maximally entangled states in qudit systems. We generalize the entanglement swapping of two pure states from the case where each quantum system contains two particles to the case of containing any number of particles, and consider the entanglement swapping between any number of systems. We also generalize the entanglement swapping chain of bipartite pure states to the one of multi-particle pure states. In addition, we consider the entanglement swapping chains for maximally entangled states.
A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Brown et al. [J. Phys. A: Math. Gen. 38 (2005) 1119]. The statistical distribution of entanglement values for the aforementioned multi-qubit systems is also explored.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا