No Arabic abstract
We investigate the decay of entanglement, due to decoherence, of multi-qubit systems that are initially prepared in highly (in some cases maximally) entangled states. We assume that during the decoherence processes each qubit of the system interacts with its own, independent environment. We determine, for systems with a small number of qubits and for various decoherence channels, the initial states exhibiting the most robust entanglement. We also consider a restricted version of this robustness optimization problem, only involving states equivalent under local unitary transformations to the |GHZ> state.
A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Brown et al. [J. Phys. A: Math. Gen. 38 (2005) 1119]. The statistical distribution of entanglement values for the aforementioned multi-qubit systems is also explored.
We report on the coherence of Greenberger-Horne-Zeilinger (GHZ) states comprised of up to 8 qubits in the IBM ibmqx5 16-qubit quantum processor. In particular, we evaluate the coherence of GHZ states with $N=1,ldots,8$ qubits, as a function of a delay time between state creation and measurement. We find that the decay in coherence occurs at a rate that is linear in the number of qubits. This is consistent with a model in which the dominant noise affecting the system is uncorrelated across qubits.
For a two-qubit system under local depolarizing channels, the most robust and most fragile states are derived for a given concurrence or negativity. For the one-sided channel, the pure states are proved to be the most robust ones, with the aid of the evolution equation for entanglement given by Konrad et al. [Nat. Phys. 4, 99 (2008)]. Based on a generalization of the evolution equation for entanglement, we classify the ansatz states in our investigation by the amount of robustness, and consequently derive the most fragile states. For the two-sided channel, the pure states are the most robust for a fixed concurrence. Under the uniform channel, the most fragile states have the minimal negativity when the concurrence is given in the region [1/2,1]. For a given negativity, the most robust states are the ones with the maximal concurrence, and the most fragile ones are the pure states with minimum of concurrence. When the entanglement approaches zero, the most fragile states under general nonuniform channels tend to the ones in the uniform channel. Influences on robustness by entanglement, degree of mixture, and asymmetry between the two qubits are discussed through numerical calculations. It turns out that the concurrence and negativity are major factors for the robustness. When they are fixed, the impact of the mixedness becomes obvious. In the nonuniform channels, the most fragile states are closely correlated with the asymmetry, while the most robust ones with the degree of mixture.
We make a comparative study of quadrature squeezing, photon-number distribution and Wigner function in a decayed quantum system. Specifically, for a field mode prepared initially in cat states interacting with a zero-temperature environment, we show that the rate of reduction of the nonclassical effects in this system is proportional to the occurrence of the decoherence process.
We microscopically model the decoherence dynamics of entangled coherent states under the influence of vacuum fluctuation. We derive an exact master equation with time-dependent coefficients reflecting the memory effect of the environment, by using the Feynman-Vernon influence functional theory in the coherent-state representation. Under the Markovian approximation, our master equation recovers the widely used Lindblad equation in quantum optics. We then investigate the non-Markovian entanglement dynamics of the quantum channel in terms of the entangled coherent states under noise. Compared with the results in Markovian limit, it shows that the non-Markovian effect enhances the disentanglement to the initially entangled coherent state. Our analysis also shows that the decoherence behaviors of the entangled coherent states depend sensitively on the symmetrical properties of the entangled coherent states as well as the interactions between the system and the environment.