Do you want to publish a course? Click here

Modeling C-Shock Chemistry in Isolated Molecular Outflows

116   0   0.0 ( 0 )
 Added by Andrew Burkhardt
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Shocks are a crucial probe for understanding the ongoing chemistry within ices on interstellar dust grains where many complex organic molecules (COMs) are believed to be formed. However, previous work has been limited to the initial liberation into the gas phase through non-thermal desorption processes such as sputtering. Here, we present results from the adapted three-phase gas-grain chemical network code NAUTILUS, with the inclusion of additional high-temperature reactions, non-thermal desorption, collisional dust heating, and shock-physics parameters. This enhanced model is capable of reproducing many of the molecular distributions and abundance ratios seen in our prior observations of the prototypical shocked-outflow L1157. In addition, we find that, among others, NH$_2$CHO, HCOOCH$_3$, and CH$_3$CHO have significant post-shock chemistry formation routes that differ from those of many other COMs observed in shocks. Finally, a number of selected species and phenomena are studied here with respect to their usefulness as shock tracers in various astrophysical sources.



rate research

Read More

We present 1.3mm Submillimeter Array (SMA) observations at $sim$3$^{primeprime}$ resolution towards the brightest section of the intermediate/massive star forming cluster NGC 2264-C. The millimetre continuum emission reveals ten 1.3mm continuum peaks, of which four are new detections. The observed frequency range includes the known molecular jet/outflow tracer SiO (5-4), thus providing the first high resolution observations of SiO towards NGC 2264-C. We also detect molecular lines of twelve additional species towards this region, including CH$_3$CN, CH$_3$OH, SO, H$_2$CO, DCN, HC$_3$N, and $^{12}$CO. The SiO (5-4) emission reveals the presence of two collimated, high velocity (up to 30kms$^{-1}$ with respect to the systemic velocity) bi-polar outflows in NGC 2264-C. In addition, the outflows are traced by emission from $^{12}$CO, SO, H$_2$CO, and CH$_3$OH. We find an evolutionary spread between cores residing in the same parent cloud. The two unambiguous outflows are driven by the brightest mm continuum cores, which are IR-dark, molecular line weak, and likely the youngest cores in the region. Furthermore, towards the RMS source AFGL 989-IRS1, the IR-bright and most evolved source in NGC 2264-C, we observe no molecular outflow emission. A molecular line rich ridge feature, with no obvious directly associated continuum source, lies on the edge of a low density cavity and may be formed from a wind driven by AFGL 989-IRS1. In addition, 229GHz class I maser emission is detected towards this feature.
152 - Juergen Ott 2014
We present maps of a large number of dense molecular gas tracers across the Central Molecular Zone of our Galaxy. The data were taken with the CSIRO/CASS Mopra telescope in Large Projects in the 1.3cm, 7mm, and 3mm wavelength regimes. Here, we focus on the brightness of the shock tracers SiO and HNCO, molecules that are liberated from dust grains under strong (SiO) and weak (HNCO) shocks. The shocks may have occurred when the gas enters the bar regions and the shock differences could be due to differences in the moving cloud mass. Based on tracers of ionizing photons, it is unlikely that the morphological differences are due to selective photo-dissociation of the molecules. We also observe direct heating of molecular gas in strongly shocked zones, with a high SiO/HNCO ratios, where temperatures are determined from the transitions of ammonia. Strong shocks appear to be the most efficient heating source of molecular gas, apart from high energy emission emitted by the central supermassive black hole Sgr A* and the processes within the extreme star formation region Sgr B2.
We present new CO(2-1) observations of 3 low-z (~350 Mpc) ULIRG systems (6 nuclei) observed with ALMA at high-spatial resolution (~500 pc). We detect massive cold molecular gas outflows in 5 out of 6 nuclei (0.3-5)x10^8 Msun. These outflows are spatially resolved with deprojected radii of 0.25-1 kpc although high-velocity molecular gas is detected up to ~0.5-1.8 kpc (1-6 kpc deprojected). The mass outflow rates are 12-400 Msun/yr and the inclination corrected average velocity of the outflowing gas 350-550 km/s (v_max = 500-900 km/s). The origin of these outflows can be explained by the nuclear starbursts although the contribution of an obscured AGN can not be completely ruled out. The position angle (PA) of the outflowing gas along the kinematic minor axis of the nuclear molecular disk suggests that the outflow axis is perpendicular to the disk for three of these outflows. Only in one case, the outflow PA is clearly not along the kinematic minor axis. The outflow depletion times are 15-80 Myr which are slightly shorter than the star-formation (SF) depletion times (30-80 Myr). However, we estimate that only 15-30% of the outflowing gas will escape the gravitational potential of the nucleus. The majority of the outflowing gas will return to the disk after 5-10 Myr and become available to form new stars. Therefore, these outflows will not likely quench the nuclear starbursts. These outflows would be consistent with being driven by radiation pressure (momentum-driven) only if the coupling between radiation and dust increases with increasing SF rates. This can be achieved if the dust optical depth is higher in objects with higher SF. The relatively small sizes (<1 kpc) and dynamical times (<3 Myr) of the cold molecular outflows suggests that molecular gas cannot survive longer in the outflow environment or that it cannot form efficiently beyond these distances or times. (Abridged)
(Abridged) We present a molecular survey of the outflows powered by L1448-mm and IRAS 04166+2706, two sources with prominent wing and extremely high velocity (EHV) components in their CO spectra. The molecular composition of the two outflows presents systematic changes with velocity that we analyze by dividing the outflow in three chemical regimes, two of them associated with the wing component and the other the EHV gas. The analysis of the two wing regimes shows that species like H2CO and CH3OH favor the low-velocity gas, while SiO and HCN are more abundant in the fastest gas. We also find that the EHV regime is relatively rich in O-bearing species, as is not only detected in CO and SiO (already reported elsewhere), but also in SO, CH3OH, and H2CO (newly reported here), with a tentative detection in HCO+. At the same time, the EHV regime is relatively poor in C-bearing molecules like CS and HCN. We suggest that this difference in composition arises from a lower C/O ratio in the EHV gas. The different chemical compositions of the wing and EHV regimes suggest that these two outflow components have different physical origins. The wing component is better explained by shocked ambient gas, although none of the existing shock models explains all observed features. The peculiar composition of the EHV gas may reflect its origin as a dense wind from the protostar or its surrounding disk.
Chemical modelling of AGB outflows is typically focused on either non-thermodynamic equilibrium chemistry in the inner region or photon-driven chemistry in the outer region. We include, for the first time, a comprehensive dust-gas chemistry in our AGB outflow chemical kinetics model, including both dust-gas interactions and grain-surface chemistry. The dust is assumed to have formed in the inner region, and follows an interstellar-like dust-size distribution. Using radiative transfer modelling, we obtain dust temperature profiles for different dust types in an O-rich and a C-rich outflow. We calculate a grid of models, sampling different outflow densities, drift velocities between the dust and gas, and dust types. Dust-gas chemistry can significantly affect the gas-phase composition, depleting parent and daughter species and increasing the abundance of certain daughter species via grain-surface formation followed by desorption/sputtering. Its influence depends on four factors: outflow density, dust temperature, initial composition, and drift velocity. The largest effects are for higher density outflows with cold dust and O-rich parent species, as these species generally have a larger binding energy. At drift velocities larger than $sim 10$ km s$^{-1}$, ice mantles undergo sputtering; however, they are not fully destroyed. Models with dust-gas chemistry can better reproduce the observed depletion of species in O-rich outflows. When including colder dust in the C-rich outflows and adjusting the binding energy of CS, the depletion in C-rich outflows is also better reproduced. To best interpret high-resolution molecular line observations from AGB outflows, dust-gas interactions are needed in chemical kinetics models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا