Do you want to publish a course? Click here

Shock Structure and Shock Heating in the Galactic Central Molecular Zone

130   0   0.0 ( 0 )
 Added by Juergen Ott
 Publication date 2014
  fields Physics
and research's language is English
 Authors Juergen Ott




Ask ChatGPT about the research

We present maps of a large number of dense molecular gas tracers across the Central Molecular Zone of our Galaxy. The data were taken with the CSIRO/CASS Mopra telescope in Large Projects in the 1.3cm, 7mm, and 3mm wavelength regimes. Here, we focus on the brightness of the shock tracers SiO and HNCO, molecules that are liberated from dust grains under strong (SiO) and weak (HNCO) shocks. The shocks may have occurred when the gas enters the bar regions and the shock differences could be due to differences in the moving cloud mass. Based on tracers of ionizing photons, it is unlikely that the morphological differences are due to selective photo-dissociation of the molecules. We also observe direct heating of molecular gas in strongly shocked zones, with a high SiO/HNCO ratios, where temperatures are determined from the transitions of ammonia. Strong shocks appear to be the most efficient heating source of molecular gas, apart from high energy emission emitted by the central supermassive black hole Sgr A* and the processes within the extreme star formation region Sgr B2.



rate research

Read More

We present hydrodynamic simulations of gas clouds inflowing from the disk to a few hundred parsec region of the Milky Way. A gravitational potential is generated to include realistic Galactic structures by using thousands of multipole expansions that describe 6.4 million stellar particles of a self-consistent Galaxy simulation. We find that a hybrid multipole expansion model, with two different basis sets and a thick disk correction, accurately reproduces the overall structures of the Milky Way. Through non-axisymmetric Galactic structures of an elongated bar and spiral arms, gas clouds in the disk inflow to the nuclear region and form a central molecular zone (CMZ)-like nuclear ring. We find that the size of the nuclear ring evolves into ~240 pc at T~1500 Myr, regardless of the initial size. For most simulation runs, the rate of gas inflow to the nuclear region is equilibrated to ~0.02 M_sun/yr. The nuclear ring is off-centered, relative to the Galactic center, by the lopsided central mass distribution of the Galaxy model, and thus an asymmetric mass distribution of the nuclear ring arises accordingly. The vertical asymmetry of the the Galaxy model also causes the nuclear ring to be tilted along the Galactic plane. During the first ~100 Myr, the vertical frequency of the gas motion is twice that of the orbital frequency, thus the projected nuclear ring shows a twisted, infinity-like shape.
The Galactic center is the closest region in which we can study star formation under extreme physical conditions like those in high-redshift galaxies. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it. We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p-H$_2$CO) transitions. We used the $3_{2,1} - 2_{2,0} / 3_{0,3} - 2_{0,2}$ line ratio to determine the gas temperature in $n sim 10^4 - 10^5 $cm$^{-3}$ gas. We have produced temperature maps and cubes with 30 and 1 km/s resolution and published all data in FITS form. Dense gas temperatures in the Galactic center range from ~60 K to > 100 K in selected regions. The highest gas temperatures T_G > 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km/s and 50 km/s clouds, and in The Brick (G0.253+0.016). We infer an upper limit on the cosmic ray ionization rate ${zeta}_{CR} < 10^{-14}$ 1/s. The dense molecular gas temperature of the region around our Galactic center is similar to values found in the central regions of other galaxies, in particular starburst systems. The gas temperature is uniformly higher than the dust temperature, confirming that dust is a coolant in the dense gas. Turbulent heating can readily explain the observed temperatures given the observed line widths. Cosmic rays cannot explain the observed variation in gas temperatures, so CMZ dense gas temperatures are not dominated by cosmic ray heating. The gas temperatures previously observed to be high in the inner ~75 pc are confirmed to be high in the entire CMZ.
The Survey of Water and Ammonia in the Galactic Center (SWAG) covers the Central Molecular Zone (CMZ) of the Milky Way at frequencies between 21.2 and 25.4 GHz obtained at the Australia Telescope Compact Array at $sim 0.9$ pc spatial and $sim 2.0$ km s$^{-1}$ spectral resolution. In this paper, we present data on the inner $sim 250$ pc ($1.4^circ$) between Sgr C and Sgr B2. We focus on the hyperfine structure of the metastable ammonia inversion lines (J,K) = (1,1) - (6,6) to derive column density, kinematics, opacity and kinetic gas temperature. In the CMZ molecular clouds, we find typical line widths of $8-16$ km s$^{-1}$ and extended regions of optically thick ($tau > 1$) emission. Two components in kinetic temperature are detected at $25-50$ K and $60-100$ K, both being significantly hotter than dust temperatures throughout the CMZ. We discuss the physical state of the CMZ gas as traced by ammonia in the context of the orbital model by Kruijssen et al. (2015) that interprets the observed distribution as a stream of molecular clouds following an open eccentric orbit. This allows us to statistically investigate the time dependencies of gas temperature, column density and line width. We find heating rates between $sim 50$ and $sim 100$ K Myr$^{-1}$ along the stream orbit. No strong signs of time dependence are found for column density or line width. These quantities are likely dominated by cloud-to-cloud variations. Our results qualitatively match the predictions of the current model of tidal triggering of cloud collapse, orbital kinematics and the observation of an evolutionary sequence of increasing star formation activity with orbital phase.
212 - Y. Sofue , M. Kohno , K. Torii 2018
The FUGIN CO survey with the Nobeyama 45-m Telescope revealed the 3D structure of a galactic shock wave in the tangential direction of the 4-kpc molecular arm. The shock front is located at G30.5+00.0+95 km/s on the up-stream (lower longitude) side of the star-forming complex W43 (G30.8-0.03), and composes a molecular bow shock (MBS) concave to W43, exhibiting an arc-shaped molecular ridge perpendicular to the galactic plane with width $sim 0^circ.1$ (10 pc) and vertical length $sim 1^circ (100 {rm pc})$. The MBS is coincident with the radio continuum bow of thermal origin, indicating association of ionized gas and similarity to a cometary bright-rimmed cloud. The up-stream edge of the bow is sharp with a growth width of $sim 0.5$ pc indicative of shock front property. The velocity width is $sim 10$ km/s, and the center velocity decreases by $sim 15$ kms from bottom to top of the bow. The total mass of molecular gas in MBS is estimated to be $sim 1.2times 10^6 <_odot$ and ionized gas $sim 2times 10^4 M_odot$. The vertical disk thickness increases step like at the MBS by $sim 2$ times from lower to upper longitude, which indicates hydraulic-jump in the gaseous disk. We argue that the MBS was formed by the galactic shock compression of an accelerated flow in the spiral-arm potential encountering the W43 molecular complex. A bow-shock theory can well reproduce the bow morphology. We argue that molecular bows are common in galactic shock waves not only in the Galaxy but also in galaxies, where MBS are associated with giant cometary HII regions. We also analyzed the HI data in the same region to obtain a map of HI optical depth and molecular fraction. We found a firm evidence of HI-to-H$_{2}$ transition in the galactic shock as revealed by a sharp molecular front at the MBS front.
Observations support the view that feedback, in the form of radio outbursts from active nuclei in central galaxies, prevents catastrophic cooling of gas and rapid star formation in many groups and clusters of galaxies. Variations in jet power drive a succession of weak shocks that can heat regions close to the active galactic nuclei (AGN). On larger scales, shocks fade into sound waves. The Braginskii viscosity determines a well-defined sound damping rate in the weakly magnetized intracluster medium (ICM) that can provide sufficient heating on larger scales. It is argued that weak shocks and sound dissipation are the main means by which radio AGN heat the ICM, in which case, the power spectrum of AGN outbursts plays a central role in AGN feedback.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا