Do you want to publish a course? Click here

Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity

53   0   0.0 ( 0 )
 Added by Gang Li
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical nonreciprocity is important in photonic information processing to route the optical signal or prevent the reverse flow of noise. By adopting the strong nonlinearity associated with a few atoms in a strongly coupled cavity QED system and an asymmetric cavity configuration, we experimentally demonstrate the nonreciprocal transmission between two counterpropagating light fields with extremely low power. This nonreciprocity can even occur on a few-photon level due to the high optical nonlinearity of the system. The working power can be flexibly tuned by changing the effective number of atoms strongly coupled to the cavity. The idea and result can be applied to optical chips as optical diodes by using fiber-based cavity QED systems. Our work opens up new perspectives for realizing optical nonreciprocity on a few-photon level based on the nonlinearities of atoms strongly coupled to an optical cavity.



rate research

Read More

The paradigm of cavity QED is a two-level emitter interacting with a high quality factor single mode optical resonator. The hybridization of the emitter and photon wave functions mandates large vacuum Rabi frequencies and long coherence times; features that so far have been successfully realized with trapped cold atoms and ions and localized solid state quantum emitters such as superconducting circuits, quantum dots, and color centers. Thermal atoms on the other hand, provide us with a dense emitter ensemble and in comparison to the cold systems are more compatible with integration, hence enabling large-scale quantum systems. However, their thermal motion and large transit time broadening is a major challenge that has to be circumvented. A promising remedy could benefit from the highly controllable and tunable electromagnetic fields of a nano-photonic cavity with strong local electric-field enhancements. Utilizing this feature, here we calculate the interaction between fast moving, thermal atoms and a nano-beam photonic crystal cavity (PCC) with large quality factor and small mode volume. Through fully quantum mechanical calculations, including Casimir-Polder potential (i.e. the effect of the surface on radiation properties of an atom) we show, when designed properly, the achievable coupling between the flying atom and the cavity photon would be strong enough to lead to Rabi flopping in spite of short interaction times. In addition, the time-resolved detection of different trajectories can be used to identify single and multiple atom counts. This probabilistic approach will find applications in cavity QED studies in dense atomic media and paves the way towards realizing coherent quantum control schemes in large-scale macroscopic systems aimed at out of the lab quantum devices.
We experimentally and theoretically investigate collective radiative effects in an ensemble of cold atoms coupled to a single-mode optical nanofiber. Our analysis unveils the microscopic dynamics of the system, showing that collective interactions between the atoms and a single guided photon gradually build-up along the atomic array in the direction of propagation of light. These results are supported by time-resolved measurements of the light transmitted and reflected by the ensemble after excitation via nanofiber-guided laser pulses, whose rise and fall times are shorter than the atomic lifetime. Superradiant decays more than one order of magnitude faster than the single-atom free-space decay rate are observed for emission in the forward-propagating guided mode, while at the same time no speed-up of the decay rate are measured in the backward direction. In addition, position-resolved measurements of the light that is transmitted past the atoms are performed by inserting the nanofiber-coupled atomic array in a 45-m long fiber ring-resonator, which allow us to experimentally reveal the progressive growth of the collective response of the atomic ensemble. Our results highlight the unique opportunities offered by nanophotonic cold atom systems for the experimental investigation of collective light-matter interaction.
We exploit the nonlinearity arising from the spin-photon interaction in an InAs quantum dot to demonstrate phase shifts of scattered light pulses at the single-photon level. Photon phase shifts of close to 90 degrees are achieved using a charged quantum dot in a micropillar cavity. We also demonstrate a photon phase switch by using a spin-pumping mechanism through Raman transitions in an in-plane magnetic field. The experimental findings are supported by a theoretical model which explores the dynamics of the system. Our results demonstrate the potential of quantum dot-induced nonlinearities for quantum information processing.
Charged quantum dots containing an electron or hole spin are bright solid-state qubits suitable for quantum networks and distributed quantum computing. Incorporating such quantum dot spin into a photonic crystal cavity creates a strong spin-photon interface, in which the spin can control a photon by modulating the cavity reflection coefficient. However, previous demonstrations of such spin-photon interfaces have relied on quantum dots that are charged randomly by nearby impurities, leading to instability in the charge state, which causes poor contrast in the cavity reflectivity. Here we demonstrate a strong spin-photon interface using a quantum dot that is charged deterministically with a diode structure. By incorporating this actively charged quantum dot in a photonic crystal cavity, we achieve strong coupling between the cavity mode and the negatively charged state of the dot. Furthermore, by initializing the spin through optical pumping, we show strong spin-dependent modulation of the cavity reflectivity, corresponding to a cooperativity of 12. This spin-dependent reflectivity is important for mediating entanglement between spins using photons, as well as generating strong photon-photon interactions for applications in quantum networking and distributed quantum computing.
The transmission spectrum of two dipole-dipole coupled atoms interacting with a single-mode optical cavity in strong coupling regime is investigated theoretically for the lower and higher excitation cases, respectively. The dressed states containing the dipole-dipole interaction (DDI) are obtained by transforming the two-atom system into an effective single-atom one. We found that the DDI can enhance the effects resulting from the positive atom-cavity detunings but weaken them for the negative detunings cases for lower excitation, which can promote the spectrum exhibiting two asymmetric peaks and shift the heights and the positions of them. For the higher excitation cases, DDI can augment the atomic saturation and lead to the deforming of the spectrum. Furthermore, the large DDI can make the atom and the cavity decouple, making a singlet of the normal-mode spectrum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا