No Arabic abstract
Charged quantum dots containing an electron or hole spin are bright solid-state qubits suitable for quantum networks and distributed quantum computing. Incorporating such quantum dot spin into a photonic crystal cavity creates a strong spin-photon interface, in which the spin can control a photon by modulating the cavity reflection coefficient. However, previous demonstrations of such spin-photon interfaces have relied on quantum dots that are charged randomly by nearby impurities, leading to instability in the charge state, which causes poor contrast in the cavity reflectivity. Here we demonstrate a strong spin-photon interface using a quantum dot that is charged deterministically with a diode structure. By incorporating this actively charged quantum dot in a photonic crystal cavity, we achieve strong coupling between the cavity mode and the negatively charged state of the dot. Furthermore, by initializing the spin through optical pumping, we show strong spin-dependent modulation of the cavity reflectivity, corresponding to a cooperativity of 12. This spin-dependent reflectivity is important for mediating entanglement between spins using photons, as well as generating strong photon-photon interactions for applications in quantum networking and distributed quantum computing.
We numerically study the dynamics and stationary states of a spin ensemble strongly coupled to a single-mode resonator subjected to loss and external driving. Employing a generalized cumulant expansion approach we analyze finite-size corrections to a semiclassical description of amplitude bistability, which is a paradigm example of a driven-dissipative phase transition. Our theoretical model allows us to include inhomogeneous broadening of the spin ensemble and to capture in which way the quantum corrections approach the semiclassical limit for increasing ensemble size $N$. We set up a criterion for the validity of the Maxwell-Bloch equations and show that close to the critical point of amplitude bistability even very large spin ensembles consisting of up to $10^4$ spins feature significant deviations from the semiclassical theory.
A key ingredient for a quantum network is an interface between stationary quantum bits and photons, which act as flying qubits for interactions and communication. Photonic crystal architectures are promising platforms for enhancing the coupling of light to solid state qubits. Quantum dots can be integrated into a photonic crystal, with optical transitions coupling to photons and spin states forming a long-lived quantum memory. Many researchers have now succeeded in coupling these emitters to photonic crystal cavities, but there have been no demonstrations of a functional spin qubit and quantum gates in this environment. Here we have developed a coupled cavity-quantum dot system in which the dot is controllably charged with a single electron. We perform the initialization, rotation and measurement of a single electron spin qubit using laser pulses and find that the cavity can significantly improve these processes.
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication. Proposals to generate multi-dimensional lattice cluster states have identified coupled spin-photon interfaces, spin-ancilla systems, and optical feedback mechanisms as potential schemes. Following these, we propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register. Our scheme makes use of the contact hyperfine interaction to enable universal quantum gates between the interface spin and a local nuclear register and funnels the resulting entanglement to photons via the spin-photon interface. Among several quantum emitters, we identify the silicon-29 vacancy centre in diamond, coupled to a nanophotonic structure, as possessing the right combination of optical quality and spin coherence for this scheme. We show numerically that using this system a 2x5-sized cluster state with a lower-bound fidelity of 0.5 and repetition rate of 65 kHz is achievable under currently realised experimental performances and with feasible technical overhead. Realistic gate improvements put 100-photon cluster states within experimental reach.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quantum dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
We present a theoretical study on the nonlinear dynamics and stationary states of an inhomogeneously broadened spin ensemble coupled to a single-mode cavity driven by an external drive with constant amplitude. Assuming a sizeable number of constituents within the ensemble allows us to use a semiclassical approach and to formally reduce the theoretical description to the Maxwell-Bloch equations for the cavity and spin amplitudes. We explore the critical slowing-down effect, quench dynamics, and asymptotic behavior of the system near a steady-state dissipative phase transition accompanied by a bistability effect. Some of our theoretical findings have recently been successfully verified in a specific experimental realization based on a spin ensemble of negatively charged nitrogen-vacancy centers in diamond strongly coupled to a single-mode microwave cavity (see Science Adv. 3, e1701626 (2017)).