Do you want to publish a course? Click here

Distributionally Robust Selection of the Best

67   0   0.0 ( 0 )
 Added by Xiaowei Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Specifying a proper input distribution is often a challenging task in simulation modeling. In practice, there may be multiple plausible distributions that can fit the input data reasonably well, especially when the data volume is not large. In this paper, we consider the problem of selecting the best from a finite set of simulated alternatives, in the presence of such input uncertainty. We model such uncertainty by an ambiguity set consisting of a finite number of plausible input distributions, and aim to select the alternative with the best worst-case mean performance over the ambiguity set. We refer to this problem as robust selection of the best (RSB). To solve the RSB problem, we develop a two-stage selection procedure and a sequential selection procedure; we then prove that both procedures can achieve at least a user-specified probability of correct selection under mild conditions. Extensive numerical experiments are conducted to investigate the computational efficiency of the two procedures. Finally, we apply the RSB approach to study a queueing systems staffing problem using synthetic data and an appointment-scheduling problem using real data from a large hospital in China. We find that the RSB approach can generate decisions significantly better than other widely used approaches.



rate research

Read More

We study the problem of bounding path-dependent expectations (within any finite time horizon $d$) over the class of discrete-time martingales whose marginal distributions lie within a prescribed tolerance of a given collection of benchmark marginal distributions. This problem is a relaxation of the martingale optimal transport (MOT) problem and is motivated by applications to super-hedging in financial markets. We show that the empirical version of our relaxed MOT problem can be approximated within $Oleft( n^{-1/2}right)$ error where $n$ is the number of samples of each of the individual marginal distributions (generated independently) and using a suitably constructed finite-dimensional linear programming problem.
305 - Utsav Sadana , Erick Delage 2020
Conditional Value at Risk (CVaR) is widely used to account for the preferences of a risk-averse agent in the extreme loss scenarios. To study the effectiveness of randomization in interdiction games with an interdictor that is both risk and ambiguity averse, we introduce a distributionally robust network interdiction game where the interdictor randomizes over the feasible interdiction plans in order to minimize the worst-case CVaR of the flow with respect to both the unknown distribution of the capacity of the arcs and his mixed strategy over interdicted arcs. The flow player, on the contrary, maximizes the total flow in the network. By using the budgeted uncertainty set, we control the degree of conservatism in the model and reformulate the interdictors non-linear problem as a bi-convex optimization problem. For solving this problem to any given optimality level, we devise a spatial branch and bound algorithm that uses the McCormick inequalities and reduced reformulation linearization technique (RRLT) to obtain convex relaxation of the problem. We also develop a column generation algorithm to identify the optimal support of the convex relaxation which is then used in the coordinate descent algorithm to determine the upper bounds. The efficiency and convergence of the spatial branch and bound algorithm is established in the numerical experiments. Further, our numerical experiments show that randomized strategies can have significantly better in-sample and out-of-sample performance than optimal deterministic ones.
We study a methodology to tackle the NASA Langley Uncertainty Quantification Challenge problem, based on an integration of robust optimization, more specifically a recent line of research known as distributionally robust optimization, and importance sampling in Monte Carlo simulation. The main computation machinery in this integrated methodology boils down to solving sampled linear programs. We will illustrate both our numerical performances and theoretical statistical guarantees obtained via connections to nonparametric hypothesis testing.
Distributionally robust supervised learning (DRSL) is emerging as a key paradigm for building reliable machine learning systems for real-world applications -- reflecting the need for classifiers and predictive models that are robust to the distribution shifts that arise from phenomena such as selection bias or nonstationarity. Existing algorithms for solving Wasserstein DRSL -- one of the most popular DRSL frameworks based around robustness to perturbations in the Wasserstein distance -- involve solving complex subproblems or fail to make use of stochastic gradients, limiting their use in large-scale machine learning problems. We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable stochastic extra-gradient algorithms which provably achieve faster convergence rates than existing approaches. We demonstrate their effectiveness on synthetic and real data when compared to existing DRSL approaches. Key to our results is the use of variance reduction and random reshuffling to accelerate stochastic min-max optimization, the analysis of which may be of independent interest.
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity sets, which can be generalized to sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization methods. We prove a theorem that generalizes the classical duality in the mathematical problem of moments. Enabled by this theorem, we reformulate the maximization with respect to measures in DRO into the dual program that searches for RKHS functions. Using universal RKHSs, the theorem applies to a broad class of loss functions, lifting common limitations such as polynomial losses and knowledge of the Lipschitz constant. We then establish a connection between DRO and stochastic optimization with expectation constraints. Finally, we propose practical algorithms based on both batch convex solvers and stochastic functional gradient, which apply to general optimization and machine learning tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا