Do you want to publish a course? Click here

A Distributionally Robust Optimization Approach to the NASA Langley Uncertainty Quantification Challenge

110   0   0.0 ( 0 )
 Added by Zhiyuan Huang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study a methodology to tackle the NASA Langley Uncertainty Quantification Challenge problem, based on an integration of robust optimization, more specifically a recent line of research known as distributionally robust optimization, and importance sampling in Monte Carlo simulation. The main computation machinery in this integrated methodology boils down to solving sampled linear programs. We will illustrate both our numerical performances and theoretical statistical guarantees obtained via connections to nonparametric hypothesis testing.



rate research

Read More

We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity sets, which can be generalized to sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization methods. We prove a theorem that generalizes the classical duality in the mathematical problem of moments. Enabled by this theorem, we reformulate the maximization with respect to measures in DRO into the dual program that searches for RKHS functions. Using universal RKHSs, the theorem applies to a broad class of loss functions, lifting common limitations such as polynomial losses and knowledge of the Lipschitz constant. We then establish a connection between DRO and stochastic optimization with expectation constraints. Finally, we propose practical algorithms based on both batch convex solvers and stochastic functional gradient, which apply to general optimization and machine learning tasks.
Specifying a proper input distribution is often a challenging task in simulation modeling. In practice, there may be multiple plausible distributions that can fit the input data reasonably well, especially when the data volume is not large. In this paper, we consider the problem of selecting the best from a finite set of simulated alternatives, in the presence of such input uncertainty. We model such uncertainty by an ambiguity set consisting of a finite number of plausible input distributions, and aim to select the alternative with the best worst-case mean performance over the ambiguity set. We refer to this problem as robust selection of the best (RSB). To solve the RSB problem, we develop a two-stage selection procedure and a sequential selection procedure; we then prove that both procedures can achieve at least a user-specified probability of correct selection under mild conditions. Extensive numerical experiments are conducted to investigate the computational efficiency of the two procedures. Finally, we apply the RSB approach to study a queueing systems staffing problem using synthetic data and an appointment-scheduling problem using real data from a large hospital in China. We find that the RSB approach can generate decisions significantly better than other widely used approaches.
112 - Rui Tuo , Wenjia Wang 2020
Bayesian optimization is a class of global optimization techniques. It regards the underlying objective function as a realization of a Gaussian process. Although the outputs of Bayesian optimization are random according to the Gaussian process assumption, quantification of this uncertainty is rarely studied in the literature. In this work, we propose a novel approach to assess the output uncertainty of Bayesian optimization algorithms, in terms of constructing confidence regions of the maximum point or value of the objective function. These regions can be computed efficiently, and their confidence levels are guaranteed by newly developed uniform error bounds for sequential Gaussian process regression. Our theory provides a unified uncertainty quantification framework for all existing sequential sampling policies and stopping criteria.
238 - Chaosheng Dong , Bo Zeng 2020
Inverse multiobjective optimization provides a general framework for the unsupervised learning task of inferring parameters of a multiobjective decision making problem (DMP), based on a set of observed decisions from the human expert. However, the performance of this framework relies critically on the availability of an accurate DMP, sufficient decisions of high quality, and a parameter space that contains enough information about the DMP. To hedge against the uncertainties in the hypothetical DMP, the data, and the parameter space, we investigate in this paper the distributionally robust approach for inverse multiobjective optimization. Specifically, we leverage the Wasserstein metric to construct a ball centered at the empirical distribution of these decisions. We then formulate a Wasserstein distributionally robust inverse multiobjective optimization problem (WRO-IMOP) that minimizes a worst-case expected loss function, where the worst case is taken over all distributions in the Wasserstein ball. We show that the excess risk of the WRO-IMOP estimator has a sub-linear convergence rate. Furthermore, we propose the semi-infinite reformulations of the WRO-IMOP and develop a cutting-plane algorithm that converges to an approximate solution in finite iterations. Finally, we demonstrate the effectiveness of our method on both a synthetic multiobjective quadratic program and a real world portfolio optimization problem.
Colocalization is a powerful tool to study the interactions between fluorescently labeled molecules in biological fluorescence microscopy. However, existing techniques for colocalization analysis have not undergone continued development especially in regards to robust statistical support. In this paper, we examine two of the most popular quantification techniques for colocalization and argue that they could be improved upon using ideas from nonparametric statistics and scan statistics. In particular, we propose a new colocalization metric that is robust, easily implementable, and optimal in a rigorous statistical testing framework. Application to several benchmark datasets, as well as biological examples, further demonstrates the usefulness of the proposed technique.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا