We study the problem of bounding path-dependent expectations (within any finite time horizon $d$) over the class of discrete-time martingales whose marginal distributions lie within a prescribed tolerance of a given collection of benchmark marginal distributions. This problem is a relaxation of the martingale optimal transport (MOT) problem and is motivated by applications to super-hedging in financial markets. We show that the empirical version of our relaxed MOT problem can be approximated within $Oleft( n^{-1/2}right)$ error where $n$ is the number of samples of each of the individual marginal distributions (generated independently) and using a suitably constructed finite-dimensional linear programming problem.
While many questions in (robust) finance can be posed in the martingale optimal transport (MOT) framework, others require to consider also non-linear cost functionals. Following the terminology of Gozlan, Roberto, Samson and Tetali this corresponds to weak martingale optimal transport (WMOT). In this article we establish stability of WMOT which is important since financial data can give only imprecise information on the underlying marginals. As application, we deduce the stability of the superreplication bound for VIX futures as well as the stability of stretched Brownian motion and we derive a monotonicity principle for WMOT.
We propose two deep neural network-based methods for solving semi-martingale optimal transport problems. The first method is based on a relaxation/penalization of the terminal constraint, and is solved using deep neural networks. The second method is based on the dual formulation of the problem, which we express as a saddle point problem, and is solved using adversarial networks. Both methods are mesh-free and therefore mitigate the curse of dimensionality. We test the performance and accuracy of our methods on several examples up to dimension 10. We also apply the first algorithm to a portfolio optimization problem where the goal is, given an initial wealth distribution, to find an investment strategy leading to a prescribed terminal wealth distribution.
A probabilistic method for solving the Monge-Kantorovich mass transport problem on $R^d$ is introduced. A system of empirical measures of independent particles is built in such a way that it obeys a doubly indexed large deviation principle with an optimal transport cost as its rate function. As a consequence, new approximation results for the optimal cost function and the optimal transport plans are derived. They follow from the Gamma-convergence of a sequence of normalized relative entropies toward the optimal transport cost. A wide class of cost functions including the standard power cost functions $|x-y|^p$ enter this framework.
Specifying a proper input distribution is often a challenging task in simulation modeling. In practice, there may be multiple plausible distributions that can fit the input data reasonably well, especially when the data volume is not large. In this paper, we consider the problem of selecting the best from a finite set of simulated alternatives, in the presence of such input uncertainty. We model such uncertainty by an ambiguity set consisting of a finite number of plausible input distributions, and aim to select the alternative with the best worst-case mean performance over the ambiguity set. We refer to this problem as robust selection of the best (RSB). To solve the RSB problem, we develop a two-stage selection procedure and a sequential selection procedure; we then prove that both procedures can achieve at least a user-specified probability of correct selection under mild conditions. Extensive numerical experiments are conducted to investigate the computational efficiency of the two procedures. Finally, we apply the RSB approach to study a queueing systems staffing problem using synthetic data and an appointment-scheduling problem using real data from a large hospital in China. We find that the RSB approach can generate decisions significantly better than other widely used approaches.
Motivated by applications in model-free finance and quantitative risk management, we consider Frechet classes of multivariate distribution functions where additional information on the joint distribution is assumed, while uncertainty in the marginals is also possible. We derive optimal transport duality results for these Frechet classes that extend previous results in the related literature. These proofs are based on representation results for increasing convex functionals and the explicit computation of the conjugates. We show that the dual transport problem admits an explicit solution for the function $f=1_B$, where $B$ is a rectangular subset of $mathbb R^d$, and provide an intuitive geometric interpretation of this result. The improved Frechet--Hoeffding bounds provide ad-hoc upper bounds for these Frechet classes. We show that the improved Frechet--Hoeffding bounds are pointwise sharp for these classes in the presence of uncertainty in the marginals, while a counterexample yields that they are not pointwise sharp in the absence of uncertainty in the marginals, even in dimension 2. The latter result sheds new light on the improved Frechet--Hoeffding bounds, since Tankov [30] has showed that, under certain conditions, these bounds are sharp in dimension 2.