Do you want to publish a course? Click here

First observation of 20B and 21B

64   0   0.0 ( 0 )
 Added by F. Miguel Marques
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The most neutron-rich boron isotopes 20B and 21B have been observed for the first time following proton removal from 22N and 22C at energies around 230 MeV/nucleon. Both nuclei were found to exist as resonances which were detected through their decay into 19B and one or two neutrons. Two-proton removal from 22N populated a prominent resonance-like structure in 20B at around 2.5 MeV above the one-neutron decay threshold, which is interpreted as arising from the closely spaced 1-,2- ground-state doublet predicted by the shell model. In the case of proton removal from 22C, the 19B plus one- and two-neutron channels were consistent with the population of a resonance in 21B 2.47+-0.19 MeV above the two-neutron decay threshold, which is found to exhibit direct two-neutron decay. The ground-state mass excesses determined for 20,21B are found to be in agreement with mass surface extrapolations derived within the latest atomic-mass evaluations.



rate research

Read More

Decay spectroscopy of the odd-proton nuclei $^{249}$Md and $^{251}$Md has been performed. High-$K$ isomeric states were identified for the first time in these two nuclei through their electromagnetic decay. An isomeric state with a half-life of $2.4(3)$ ms and an excitation energy $geq 910$ keV was found in $^{249}$Md. In $^{251}$Md, an isomeric state with a half-life of $1.37(6)$ s and an excitation energy $geq 844$ keV was found. Similarly to the neighbouring $^{255}$Lr, these two isomeric states are interpreted as 3 quasi-particle high-$K$ states and compared to new theoretical calculations. Excited nuclear configurations were calculated within two scenarios: via blocking nuclear states located in proximity to the Fermi surface or/and using the quasiparticle Bardeen-Cooper-Schrieffer method. Relevant states were selected on the basis of the microscopic-macroscopic model with a deformed Woods-Saxon potential. The most probable candidates for the configurations of $K$-isomeric states in Md nuclei are proposed.
Three candidate events of the neutron-rich hypernucleus 6{Lambda}H were uniquely identified in the FINUDA experiment at DA{Phi}NE, Frascati, by observing {pi}+ mesons from the (K-stop,{pi}+) production reaction on 6Li targets, in coincidence with {pi}-mesons from 6{Lambda}H rightarrow 6He+{pi}- weak decay. Details of the experiment and the analysis of its data are reported, leading to an estimate of (2.9pm2.0)cdot10-6/K- stop for the 6{Lambda}H production rate times the two-body {pi}- weak decay branching ratio. The 6{Lambda}H binding energy with respect to 5H + {Lambda} was determined jointly from production and decay to be B{Lambda} = (4.0 pm 1.1) MeV, assuming that 5H is unbound with respect to 3H + 2n by 1.7 MeV. The binding energy determined from production is higher, in each one of the three events, than that determined from decay, with a difference of (0.98 pm 0.74) MeV here assigned to the 0+g.s. rightarrow 1+ excitation. The consequences of this assignment to {Lambda} hypernuclear dynamics are briefly discussed.
109 - T.B. Webb , S.M. Wang , K.W. Brown 2018
The structure of the extremely proton-rich nucleus $^{11}_{~8}$O$_3$, the mirror of the two-neutron halo nucleus $^{11}_{~3}$Li$_8$, has been studied experimentally for the first time. Following two-neutron knockout reactions with a $^{13}$O beam, the $^{11}$O decay products were detected after two-proton emission and used to construct an invariant-mass spectrum. A broad peak of width $sim$3,MeV was observed. Within the Gamow coupled-channel approach, it was concluded that this peak is a multiplet with contributions from the four-lowest $^{11}$O resonant states: $J^{pi}$=3/2$^-_1$, 3/2$^-_2$, 5/2$^+_1$, and 5/2$^+_2$. The widths and configurations of these states show strong, non-monotonic dependencies on the depth of the $p$-$^9$C potential. This unusual behavior is due to the presence of a broad threshold resonant state in $^{10}$N, which is an analog of the virtual state in $^{10}$Li in the presence of the Coulomb potential. After optimizing the model to the data, only a moderate isospin asymmetry between ground states of $^{11}$O and $^{11}$Li was found.
Bound-systems of $Xi^-$--$^{14}_{}{rm N}$ are studied via $Xi^-$ capture at rest followed by emission of a twin single-$Lambda$ hypernucleus in the emulsion detectors. Two events forming extremely deep $Xi^-$ bound states were obtained by analysis of a hybrid method in the E07 experiment at J-PARC and reanalysis of the E373 experiment at KEK-PS. The decay mode of one event was assigned as $Xi^-+^{14}_{}{rm N}to^{5}_{Lambda}{rm He}$+$^{5}_{Lambda}{rm He}$+$^{4}_{}{rm He}$+n. Since there are no excited states for daughter particles, the binding energy of the $Xi^-$ hyperon, $B_{Xi^-}$, in $^{14}_{}{rm N}$ nucleus was uniquely determined to be 6.27 $pm$ 0.27 MeV. Another $Xi^-$--$^{14}_{}{rm N}$ system via the decay $^{9}_{Lambda}{rm Be}$ + $^{5}_{Lambda}{rm He}$ + n brings a $B_{Xi^-}$ value, 8.00 $pm$ 0.77 MeV or 4.96 $pm$ 0.77 MeV, where the two possible values of $B_{Xi^-}$ correspond to the ground and the excited states of the daughter $^{9}_{Lambda}{rm Be}$ nucleus, respectively. Because the $B_{Xi^-}$ values are larger than those of the previously reported events (KISO and IBUKI), which are both interpreted as the nuclear $1p$ state of the $Xi^-$--$^{14}_{}{rm N}$ system, these new events give the first indication of the nuclear $1s$ state of the $Xi$ hypernucleus, $^{15}_{Xi}{rm C}$.
Several new bands have been identified in 130Ba, among which there is one with band-head spin 8+. Its properties are in agreement with the Fermi-aligned u h11/2^2 , 7/2+[523] otimes 9/2-[514] Nilsson configuration. This is the first observation of a two-quasiparticle t-band in the A=130 mass region. The t-band is fed by a dipole band involving two additional h11/2 protons. The odd-spin partners of the proton and neutron S-bands and the ground-state band at high spins are also newly identified. The observed bands are discussed using several theoretical models, which strongly suggest the coexistence of prolate and oblate shapes polarized by rotation aligned two-proton and two-neutron configurations, as well as prolate collective rotations around axes with different orientations. With the new results, 130Ba presents one of the best and most complete sets of collective excitations that a gamma-soft nucleus can manifest at medium and high spins, revealing a diversity of shapes and rotations for the nuclei in the A = 130 mass region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا