Do you want to publish a course? Click here

First observation of the hyper superheavy hydrogen 6{Lambda}H

352   0   0.0 ( 0 )
 Added by Elena Botta
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

Three candidate events of the neutron-rich hypernucleus 6{Lambda}H were uniquely identified in the FINUDA experiment at DA{Phi}NE, Frascati, by observing {pi}+ mesons from the (K-stop,{pi}+) production reaction on 6Li targets, in coincidence with {pi}-mesons from 6{Lambda}H rightarrow 6He+{pi}- weak decay. Details of the experiment and the analysis of its data are reported, leading to an estimate of (2.9pm2.0)cdot10-6/K- stop for the 6{Lambda}H production rate times the two-body {pi}- weak decay branching ratio. The 6{Lambda}H binding energy with respect to 5H + {Lambda} was determined jointly from production and decay to be B{Lambda} = (4.0 pm 1.1) MeV, assuming that 5H is unbound with respect to 3H + 2n by 1.7 MeV. The binding energy determined from production is higher, in each one of the three events, than that determined from decay, with a difference of (0.98 pm 0.74) MeV here assigned to the 0+g.s. rightarrow 1+ excitation. The consequences of this assignment to {Lambda} hypernuclear dynamics are briefly discussed.



rate research

Read More

Evidence for the neutron-rich hypernucleus 6{Lambda}H is presented from the FINUDA experiment at DA{Phi}NE, Frascati, studying ({pi}+, {pi}-) pairs in coincidence from the K- +6Li rightarrow 6 H+{pi}+ production reaction followed by 6{Lambda}H rightarrow 6He + {pi}- weak decay. The production rate of 6{Lambda}H undergoing this two-body {pi}- decay is determined to be (2.9pm2.0)cdot10-6/K-. Its binding energy, evaluated jointly from production and decay, is B{Lambda}(6{Lambda}H) = (4.0pm1.1) MeV with respect to 5H+{Lambda}. A systematic difference of (0.98 pm 0.74) MeV between B{Lambda} values derived separately from decay and from production is tentatively assigned to the 6{Lambda}H 0+g.s. rightarrow 1+ excitation.
61 - R. Honda , M. Agnello , J. K. Ahn 2017
We searched for the bound state of the neutron-rich $Lambda$-hypernucleus ${}^{6}_{Lambda}$H, using the ${}^{6}$Li($pi^{-}, K^{+}$)X double charge-exchange reaction at a $pi^{-}$ beam momentum of 1.2 GeV/c at J-PARC. A total of $1.4 times 10^{12}$ $pi^{-}$ was driven onto a ${}^{6}$Li target of 3.5-g/$rm cm^2$ thickness. No event was observed below the bound threshold, i.e., the mass of ${}^{4}_{Lambda}$H + 2n, in the missing-mass spectrum of the ${}^{6}$Li($pi^{-}, K^{+}$)X reaction in the $2^{circ}$ < $theta_{pi K}$ < $20^{circ}$ angular range. Furthermore, no event was found up to 2.8 MeV/$c^2$ above the bound threshold. We obtained the the double-differential cross section spectra of the ${}^{6}$Li($pi^{-}, K^{+}$)X reaction in the angular range of $2^{circ}$ < $theta_{pi K}$ < $14^{circ}$. An upper limit of 0.56 nb/sr (90% C.L.) was obtained for the production cross section of the ${}^{6}_{Lambda}$H hypernucleus bound state. In addition, not only the bound state region, but also the $Lambda$ continuum region and part of the $Sigma^{-}$ quasi-free production region of the ${}^{6}$Li($pi^{-}, K^{+}$)X reaction, were obtained with high statistics. The present missing-mass spectrum will facilitate the investigation of the $Sigma^{-}$-nucleus optical potential for $Sigma^{-}$-${}^{5}$He through spectrum shape analysis.
93 - M.Agnello , G.Beer , L.Benussi 2006
The production of neutron rich $Lambda$-hypernuclei via the ($K^-_stop$,$pi^+$) reaction has been studied using data collected with the FINUDA spectrometer at the DA$Phi$NE $phi$-factory (LNF). The analysis of the inclusive $pi^+$ momentum spectra is presented and an upper limit for the production of $^6_Lambda$H and $^7_Lambda$H from $^6$Li and $^7$Li, is assessed for the first time.
The most neutron-rich boron isotopes 20B and 21B have been observed for the first time following proton removal from 22N and 22C at energies around 230 MeV/nucleon. Both nuclei were found to exist as resonances which were detected through their decay into 19B and one or two neutrons. Two-proton removal from 22N populated a prominent resonance-like structure in 20B at around 2.5 MeV above the one-neutron decay threshold, which is interpreted as arising from the closely spaced 1-,2- ground-state doublet predicted by the shell model. In the case of proton removal from 22C, the 19B plus one- and two-neutron channels were consistent with the population of a resonance in 21B 2.47+-0.19 MeV above the two-neutron decay threshold, which is found to exhibit direct two-neutron decay. The ground-state mass excesses determined for 20,21B are found to be in agreement with mass surface extrapolations derived within the latest atomic-mass evaluations.
145 - W. H. Ma , J. S. Wang , D. Patel 2017
$^{6}$He+$t$ cluster states of exited $^{9}$Li have been measured by 32.7 MeV/nucleon $^{9}$Li beams bombarding on $^{208}$Pb target. Two resonant states are clearly observed with the excitation energies at 9.8 MeV and 12.6 MeV and spin-parity of 3/2$^{-}$ and 7/2$^{-}$ respectively. These two states are considered to be members of K$^{pi}$=1/2$^{-}$ band. The spin-parity of them are identified by the method of angular correlation analysis and verified by the continuum discretized coupled channels (CDCC) calculation, which agrees with the prediction of the generator coordinate method (GCM). A monopole matrix element about 4 fm$^{2}$ for the 3/2$^{-}$ state is extracted from the distorted wave Born approximation (DWBA) calculation. These results strongly support the feature of clustering structure of two neutron-rich clusters in the neutron-rich nucleus $^{9}$Li for the first time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا