No Arabic abstract
A discontinuous Galerkin method by patch reconstruction is proposed for Stokes flows. A locally divergence-free reconstruction space is employed as the approximation space, and the interior penalty method is adopted which imposes the normal component penalty terms to cancel out the pressure term. Consequently, the Stokes equation can be solved as an elliptic system instead of a saddle-point problem due to such weak form. The number of degree of freedoms of our method is the same as the number of elements in the mesh for different order of accuracy. The error estimations of the proposed method are given in a classical style, which are then verified by some numerical examples.
We propose a new discontinuous Galerkin method based on the least-squares patch reconstruction for the biharmonic problem. We prove the optimal error estimate of the proposed method. The two-dimensional and three-dimensional numerical examples are presented to confirm the accuracy and efficiency of the method with several boundary conditions and several types of polygon meshes and polyhedral meshes.
In this article, using the weighted discrete least-squares, we propose a patch reconstruction finite element space with only one degree of freedom per element. As the approximation space, it is applied to the discontinuous Galerkin methods with the upwind scheme for the steady-state convection-diffusion-reaction problems over polytopic meshes. The optimal error estimates are provided in both diffusion-dominated and convection-dominated regimes. Furthermore, several numerical experiments are presented to verify the theoretical error estimates, and to well approximate boundary layers and/or internal layers.
In this paper, we develop a well-balanced oscillation-free discontinuous Galerkin (OFDG) method for solving the shallow water equations with a non-flat bottom topography. One notable feature of the constructed scheme is the well-balanced property, which preserves exactly the hydrostatic equilibrium solutions up to machine error. Another feature is the non-oscillatory property, which is very important in the numerical simulation when there exist some shock discontinuities. To control the spurious oscillations, we construct an OFDG method with an extra damping term to the existing well-balanced DG schemes proposed in [Y. Xing and C.-W. Shu, CICP, 1(2006), 100-134.]. With a careful construction of the damping term, the proposed method achieves both the well-balanced property and non-oscillatory property simultaneously without compromising any order of accuracy. We also present a detailed procedure for the construction and a theoretical analysis for the preservation of the well-balancedness property. Extensive numerical experiments including one- and two-dimensional space demonstrate that the proposed methods possess the desired properties without sacrificing any order of accuracy.
The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, space and angular variables and contains an integral term in angular directions while being hyperbolic in space. The challenges for its numerical solution include the needs to handle with its high dimensionality, the presence of the integral term, and the development of discontinuities and sharp layers in its solution along spatial directions. Its numerical solution is studied in this paper using an adaptive moving mesh discontinuous Galerkin method for spatial discretization together with the discrete ordinate method for angular discretization. The former employs a dynamic mesh adaptation strategy based on moving mesh partial differential equations to improve computational accuracy and efficiency. Its mesh adaptation ability, accuracy, and efficiency are demonstrated in a selection of one- and two-dimensional numerical examples.
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressure space consists of piecewise linear polynomials without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise quadratic polynomials with respect to boundary partition is introduced to enforce boundary conditions as well as to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence free.