Do you want to publish a course? Click here

A Discontinuous Galerkin Method by Patch Reconstruction for Biharmonic Problem

233   0   0.0 ( 0 )
 Added by Zhiyuan Sun
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We propose a new discontinuous Galerkin method based on the least-squares patch reconstruction for the biharmonic problem. We prove the optimal error estimate of the proposed method. The two-dimensional and three-dimensional numerical examples are presented to confirm the accuracy and efficiency of the method with several boundary conditions and several types of polygon meshes and polyhedral meshes.



rate research

Read More

A discontinuous Galerkin method by patch reconstruction is proposed for Stokes flows. A locally divergence-free reconstruction space is employed as the approximation space, and the interior penalty method is adopted which imposes the normal component penalty terms to cancel out the pressure term. Consequently, the Stokes equation can be solved as an elliptic system instead of a saddle-point problem due to such weak form. The number of degree of freedoms of our method is the same as the number of elements in the mesh for different order of accuracy. The error estimations of the proposed method are given in a classical style, which are then verified by some numerical examples.
108 - Di Yang , Yinnian He 2020
In this article, using the weighted discrete least-squares, we propose a patch reconstruction finite element space with only one degree of freedom per element. As the approximation space, it is applied to the discontinuous Galerkin methods with the upwind scheme for the steady-state convection-diffusion-reaction problems over polytopic meshes. The optimal error estimates are provided in both diffusion-dominated and convection-dominated regimes. Furthermore, several numerical experiments are presented to verify the theoretical error estimates, and to well approximate boundary layers and/or internal layers.
213 - Lu Zhang 2021
This paper proposes and analyzes an ultra-weak local discontinuous Galerkin scheme for one-dimensional nonlinear biharmonic Schr{o}dinger equations. We develop the paradigm of the local discontinuous Galerkin method by introducing the second-order spatial derivative as an auxiliary variable instead of the conventional first-order derivative. The proposed semi-discrete scheme preserves a few physically relevant properties such as the conservation of mass and the conservation of Hamiltonian accompanied by its stability for the targeted nonlinear biharmonic Schr{o}dinger equations. We also derive optimal $L^2$-error estimates of the scheme that measure both the solution and the auxiliary variable. Several numerical studies demonstrate and support our theoretical findings.
101 - Ruo Li , Zhiyuan Sun , Fanyi Yang 2019
We adapt a symmetric interior penalty discontinuous Galerkin method using a patch reconstructed approximation space to solve elliptic eigenvalue problems, including both second and fourth order problems in 2D and 3D. It is a direct extension of the method recently proposed to solve corresponding boundary value problems, and the optimal error estimates of the approximation to eigenfunctions and eigenvalues are instant consequences from existing results. The method enjoys the advantage that it uses only one degree of freedom on each element to achieve very high order accuracy, which is highly preferred for eigenvalue problems as implied by Zhangs recent study [J. Sci. Comput. 65(2), 2015]. By numerical results, we illustrate that higher order methods can provide much more reliable eigenvalues. To justify that our method is the right one for eigenvalue problems, we show that the patch reconstructed approximation space attains the same accuracy with fewer degrees of freedom than classical discontinuous Galerkin methods. With the increasing of the polynomial order, our method can even achieve a better performance than conforming finite element methods, such methods are traditionally the methods of choice to solve problems with high regularities.
We propose a Discontinuous Galerkin method for the Poisson equation on polygonal tessellations in two dimensions, stabilized by penalizing, locally in each element $K$, a residual term involving the fluxes, measured in the norm of the dual of $H^1(K)$. The scalar product corresponding to such a norm is numerically realized via the introduction of a (minimal) auxiliary space inspired by the Virtual Element Method. Stability and optimal error estimates in the broken $H^1$ norm are proven under a weak shape regularity assumption allowing the presence of very small edges. The results of numerical tests confirm the theoretical estimates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا