No Arabic abstract
In this paper, we develop a well-balanced oscillation-free discontinuous Galerkin (OFDG) method for solving the shallow water equations with a non-flat bottom topography. One notable feature of the constructed scheme is the well-balanced property, which preserves exactly the hydrostatic equilibrium solutions up to machine error. Another feature is the non-oscillatory property, which is very important in the numerical simulation when there exist some shock discontinuities. To control the spurious oscillations, we construct an OFDG method with an extra damping term to the existing well-balanced DG schemes proposed in [Y. Xing and C.-W. Shu, CICP, 1(2006), 100-134.]. With a careful construction of the damping term, the proposed method achieves both the well-balanced property and non-oscillatory property simultaneously without compromising any order of accuracy. We also present a detailed procedure for the construction and a theoretical analysis for the preservation of the well-balancedness property. Extensive numerical experiments including one- and two-dimensional space demonstrate that the proposed methods possess the desired properties without sacrificing any order of accuracy.
In this paper, we develop an oscillation free local discontinuous Galerkin (OFLDG) method for solving nonlinear degenerate parabolic equations. Following the idea of our recent work [J. Lu, Y. Liu, and C.-W. Shu, SIAM J. Numer. Anal. 59(2021), pp. 1299-1324.], we add the damping terms to the LDG scheme to control the spurious oscillations when solutions have a large gradient. The $L^2$-stability and optimal priori error estimates for the semi-discrete scheme are established. The numerical experiments demonstrate that the proposed method maintains the high-order accuracy and controls the spurious oscillations well.
This paper proposes and analyzes an ultra-weak local discontinuous Galerkin scheme for one-dimensional nonlinear biharmonic Schr{o}dinger equations. We develop the paradigm of the local discontinuous Galerkin method by introducing the second-order spatial derivative as an auxiliary variable instead of the conventional first-order derivative. The proposed semi-discrete scheme preserves a few physically relevant properties such as the conservation of mass and the conservation of Hamiltonian accompanied by its stability for the targeted nonlinear biharmonic Schr{o}dinger equations. We also derive optimal $L^2$-error estimates of the scheme that measure both the solution and the auxiliary variable. Several numerical studies demonstrate and support our theoretical findings.
In this paper, high order semi-implicit well-balanced and asymptotic preserving finite difference WENO schemes are proposed for the shallow water equations with a non-flat bottom topography. We consider the Froude number ranging from O(1) to 0, which in the zero Froude limit becomes the lake equations for balanced flow without gravity waves. We apply a well-balanced finite difference WENO reconstruction, coupled with a stiffly accurate implicit-explicit (IMEX) Runge-Kutta time discretization. The resulting semi-implicit scheme can be shown to be well-balanced, asymptotic preserving (AP) and asymptotically accurate (AA) at the same time. Both one- and two-dimensional numerical results are provided to demonstrate the high order accuracy, AP property and good performance of the proposed methods in capturing small perturbations of steady state solutions.
In this paper, an energy-based discontinuous Galerkin method for dynamic Euler-Bernoulli beam equations is developed. The resulting method is energy-dissipating or energy-conserving depending on the simple, mesh-independent choice of numerical fluxes. By introducing a velocity field, the original problem is transformed into a first-order in time system. In our formulation, the discontinuous Galerkin approximations for the original displacement field and the auxiliary velocity field are not restricted to be in the same space. In particular, a given accuracy can be achieved with the fewest degrees of freedom when the degree for the approximation space of the velocity field is two orders lower than the degree of approximation space for the displacement field. In addition, we establish the error estimates in an energy norm and demonstrate the corresponding optimal convergence in numerical experiments.
This note aims at demonstrating the advantage of moving-water well-balanced schemes over still-water well-balanced schemes for the shallow water equations. We concentrate on numerical examples with solutions near a moving-water equilibrium. For such examples, still-water well-balanced methods are not capable of capturing the small perturbations of the moving-water equilibrium and may generate significant spurious oscillations, unless an extremely refined mesh is used. On the other hand, moving- water well-balanced methods perform well in these tests. The numerical examples in this note clearly demonstrate the importance of utilizing moving-water well-balanced methods for solutions near a moving-water equilibrium.