No Arabic abstract
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressure space consists of piecewise linear polynomials without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise quadratic polynomials with respect to boundary partition is introduced to enforce boundary conditions as well as to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence free.
Recently, the $P_1$-nonconforming finite element space over square meshes has been proved stable to solve Stokes equations with the piecewise constant space for velocity and pressure, respectively. In this paper, we will introduce its locally divergence-free subspace to solve the elliptic problem for the velocity only decoupled from the Stokes equation. The concerning system of linear equations is much smaller compared to the Stokes equations. Furthermore, it is split into two smaller ones. After solving the velocity first, the pressure in the Stokes problem can be obtained by an explicit method very rapidly.
Fourth-order differential equations play an important role in many applications in science and engineering. In this paper, we present a three-field mixed finite-element formulation for fourth-order problems, with a focus on the effective treatment of the different boundary conditions that arise naturally in a variational formulation. Our formulation is based on introducing the gradient of the solution as an explicit variable, constrained using a Lagrange multiplier. The essential boundary conditions are enforced weakly, using Nitsches method where required. As a result, the problem is rewritten as a saddle-point system, requiring analysis of the resulting finite-element discretization and the construction of optimal linear solvers. Here, we discuss the analysis of the well-posedness and accuracy of the finite-element formulation. Moreover, we develop monolithic multigrid solvers for the resulting linear systems. Two and three-dimensional numerical results are presented to demonstrate the accuracy of the discretization and efficiency of the multigrid solvers proposed.
In this work we study a residual based a posteriori error estimation for the CutFEM method applied to an elliptic model problem. We consider the problem with non-polygonal boundary and the analysis takes into account the geometry and data approximation on the boundary. The reliability and efficiency are theoretically proved. Moreover, constants are robust with respect to how the domain boundary cuts the mesh.
In this work we present an adaptive boundary element method for computing the electromagnetic response of wave interactions in hyperbolic metamaterials. One unique feature of hyperbolic metamaterial is the strongly directional wave in its propagating cone, which induces sharp transition for the solution of the integral equation across the cone boundary when wave starts to decay or grow exponentially. In order to avoid a global refined mesh over the whole boundary, we employ a two-level a posteriori error estimator and an adaptive mesh refinement procedure to resolve the singularity locally for the solution of the integral equation. Such an adaptive procedure allows for the reduction of the degree of freedom significantly for the integral equation solver while achieving desired accuracy for the solution. In addition, to resolve the fast transition of the fundamental solution and its derivatives accurately across the propagation cone boundary, adaptive numerical quadrature rules are applied to evaluate the integrals for the stiff matrices. Finally, in order to formulate the integral equations over the boundary, we also derive the limits of layer potentials and their derivatives in the hyperbolic media when the target points approach the boundary.
In this paper, a stabilized extended finite element method is proposed for Stokes interface problems on unfitted triangulation elements which do not require the interface align with the triangulation. The velocity solution and pressure solution on each side of the interface are separately expanded in the standard nonconforming piecewise linear polynomials and the piecewise constant polynomials, respectively. Harmonic weighted fluxes and arithmetic fluxes are used across the interface and cut edges (segment of the edges cut by the interface), respectively. Extra stabilization terms involving velocity and pressure are added to ensure the stable inf-sup condition. We show a priori error estimates under additional regularity hypothesis. Moreover, the errors {in energy and $L^2$ norms for velocity and the error in $L^2$ norm for pressure} are robust with respect to the viscosity {and independent of the location of the interface}. Results of numerical experiments are presented to {support} the theoretical analysis.