No Arabic abstract
Assume a polynomial-time algorithm for factoring integers, Conjecture~ref{conj}, $dgeq 3,$ and $q$ and $p$ are prime numbers, where $pleq q^A$ for some $A>0$. We develop a polynomial-time algorithm in $log(q)$ that lifts every $mathbb{Z}/qmathbb{Z}$ point of $S^{d-2}subset S^{d}$ to a $mathbb{Z}[1/p]$ point of $S^d$ with the minimum height. We implement our algorithm for $d=3 text{ and }4$. Based on our numerical results, we formulate a conjecture which can be checked in polynomial-time and gives the optimal bound on the diophantine exponent of the $mathbb{Z}/qmathbb{Z}$ points of $S^{d-2}subset S^d$.
In this paper, we determine the primitive solutions of the Diophantine equation $(x-d)^2+x^2+(x+d)^2=y^n$ when $ngeq 2$ and $d=p^b$, $p$ a prime and $pleq 10^4$. The main ingredients are the characterization of primitive divisors on Lehmer sequences and the development of an algorithmic method of proving the non-existence of integer solutions of the equation $f(x)=a^b$, where $f(x)inmathbb Z[x]$, $a$ a positive integer and $b$ an arbitrary positive integer.
This paper concerns the behavior of the eigenfunctions and eigenvalues of the round spheres Laplacian acting on the space of sections of a real line bundle which is defined on the complement of an even numbers of points in $S^2$. Of particular interest is how these eigenvalues and eigenvectors change when viewed as functions on the configuration spaces of points.
A two-type version of the frog model on $mathbb{Z}^d$ is formulated, where active type $i$ particles move according to lazy random walks with probability $p_i$ of jumping in each time step ($i=1,2$). Each site is independently assigned a random number of particles. At time 0, the particles at the origin are activated and assigned type 1 and the particles at one other site are activated and assigned type 2, while all other particles are sleeping. When an active type $i$ particle moves to a new site, any sleeping particles there are activated and assigned type $i$, with an arbitrary tie-breaker deciding the type if the site is hit by particles of both types in the same time step. We show that the event $G_i$ that type $i$ activates infinitely many particles has positive probability for all $p_1,p_2in(0,1]$ ($i=1,2$). Furthermore, if $p_1=p_2$, then the types can coexist in the sense that $mathbb{P}(G_1cap G_2)>0$. We also formulate several open problems. For instance, we conjecture that, when the initial number of particles per site has a heavy tail, the types can coexist also when $p_1 eq p_2$.
In this paper we propose a different (and equivalent) norm on $S^{2} ({mathbb{D}})$ which consists of functions whose derivatives are in the Hardy space of unit disk. The reproducing kernel of $S^{2}({mathbb{D}})$ in this norm admits an explicit form, and it is a complete Nevanlinna-Pick kernel. Furthermore, there is a surprising connection of this norm with $3$ -isometries. We then study composition and multiplication operators on this space. Specifically, we obtain an upper bound for the norm of $C_{varphi}$ for a class of composition operators. We completely characterize multiplication operators which are $m$-isometries. As an application of the 3-isometry, we describe the reducing subspaces of $M_{varphi}$ on $S^{2}({mathbb{D}})$ when $varphi$ is a finite Blaschke product of order 2.
We consider an $O(d,d;mathbb{Z})$ invariant massive deformation of double field theory at the level of free theory. We study Kaluza-Klein reduction on $R^{1,n-1} times T^{d}$ and derive the diagonalized second order action for each helicity mode. Imposing the absence of ghosts and tachyons, we obtain a class of consistency conditions which include the well known weak constraint in double field theory as a special case. Consequently, we find two-parameter sets of $O(d,d;mathbb{Z})$ invariant Fierz-Pauli massive gravity theories.