Do you want to publish a course? Click here

$O(d,d;mathbb{Z})$ invariant Fierz-Pauli massive gravity

168   0   0.0 ( 0 )
 Added by Kaishu Saito
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider an $O(d,d;mathbb{Z})$ invariant massive deformation of double field theory at the level of free theory. We study Kaluza-Klein reduction on $R^{1,n-1} times T^{d}$ and derive the diagonalized second order action for each helicity mode. Imposing the absence of ghosts and tachyons, we obtain a class of consistency conditions which include the well known weak constraint in double field theory as a special case. Consequently, we find two-parameter sets of $O(d,d;mathbb{Z})$ invariant Fierz-Pauli massive gravity theories.



rate research

Read More

160 - Daniel Kapec , Prahar Mitra 2017
We consider the tree-level scattering of massless particles in $(d+2)$-dimensional asymptotically flat spacetimes. The $mathcal{S}$-matrix elements are recast as correlation functions of local operators living on a space-like cut $mathcal{M}_d$ of the null momentum cone. The Lorentz group $SO(d+1,1)$ is nonlinearly realized as the Euclidean conformal group on $mathcal{M}_d$. Operators of non-trivial spin arise from massless particles transforming in non-trivial representations of the little group $SO(d)$, and distinguished operators arise from the soft-insertions of gauge bosons and gravitons. The leading soft-photon operator is the shadow transform of a conserved spin-one primary operator $J_a$, and the subleading soft-graviton operator is the shadow transform of a conserved spin-two symmetric traceless primary operator $T_{ab}$. The universal form of the soft-limits ensures that $J_a$ and $T_{ab}$ obey the Ward identities expected of a conserved current and energy momentum tensor in a Euclidean CFT$_d$, respectively.
431 - Jeong-Hyuck Park 2019
Upon treating the whole closed-string massless NS-NS sector as stringy graviton fields, Double Field Theory may evolve into `Stringy Gravity. In terms of an $mathbf{O}(D,D)$ covariant differential geometry beyond Riemann, we present the definitions of the off-shell conserved stringy Einstein curvature tensor and the on-shell conserved stringy Energy-Momentum tensor. Equating them, all the equations of motion of the massless sector are unified into a single expression, $G_{AB}{=8pi G} T_{AB}$, carrying $mathbf{O}(D,D)$ vector indices, which we dub `the Einstein Double Field Equations.
We revisit the problem of the bulk-boundary unitarity clash in 2 + 1 dimensional gravity theories, which has been an obstacle in providing a viable dual two-dimensional conformal field theory for bulk gravity in anti-de Sitter (AdS) spacetime. Chiral gravity, which is a particular limit of cosmological topologically massive gravity (TMG), suffers from pertur- bative log-modes with negative energies inducing a non-unitary logarithmic boundary field theory. We show here that any f(R) extension of TMG does not improve the situation. We also study the perturbative modes in the metric formulation of minimal massive gravity- originally constructed in a first-order formulation-and find that the massive mode has again negative energy except in the chiral limit. We comment on this issue and also discuss a possible solution to the problem of negative energy modes. In any of these theories, the infinitesimal dangerous deformations might not be integrable to full solutions; this suggests a linearization instability of AdS spacetime in the direction of the perturbative log-modes.
241 - Arunabha Saha 2018
We find the equations of motion of membranes dual to the black holes in Einstein-Gauss-Bonnet (EGB) gravity to leading order in 1/D in the large D regime. We also find the metric solutions to the EGB equations to first subleading order in 1/D in terms of membrane variables. We propose a world volume stress tensor for the membrane whose conservation equations are equivalent to the leading order membrane equations. We also work out the light quasi-normal mode spectrum of static black holes in EGB gravity from the linearised fluctuations of static, round membranes. Also, the effective equations for stationary black holes and the spectrum of linearised spectrum about black string configurations has been obtained using the membrane equation for EGB gravity.All our results are worked out to linear order in the Gauss-Bonnet parameter.
We construct a new SO(3)$times$SO(3) invariant non-supersymmetric solution of the bosonic field equations of $D=11$ supergravity from the corresponding stationary point of maximal gauged $N=8$ supergravity by making use of the non-linear uplift formulae for the metric and the 3-form potential. The latter are crucial as this solution appears to be inaccessible to traditional techniques of solving Einsteins field equations, and is arguably the most complicated closed form solution of this type ever found. The solution is also a promising candidate for a stable non-supersymmetric solution of M-theory uplifted from gauged supergravity. The technique that we present here may be applied more generally to uplift other solutions of gauged supergravity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا