Do you want to publish a course? Click here

Competing frogs on $mathbb{Z}^d$

193   0   0.0 ( 0 )
 Added by Maria Deijfen
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A two-type version of the frog model on $mathbb{Z}^d$ is formulated, where active type $i$ particles move according to lazy random walks with probability $p_i$ of jumping in each time step ($i=1,2$). Each site is independently assigned a random number of particles. At time 0, the particles at the origin are activated and assigned type 1 and the particles at one other site are activated and assigned type 2, while all other particles are sleeping. When an active type $i$ particle moves to a new site, any sleeping particles there are activated and assigned type $i$, with an arbitrary tie-breaker deciding the type if the site is hit by particles of both types in the same time step. We show that the event $G_i$ that type $i$ activates infinitely many particles has positive probability for all $p_1,p_2in(0,1]$ ($i=1,2$). Furthermore, if $p_1=p_2$, then the types can coexist in the sense that $mathbb{P}(G_1cap G_2)>0$. We also formulate several open problems. For instance, we conjecture that, when the initial number of particles per site has a heavy tail, the types can coexist also when $p_1 eq p_2$.



rate research

Read More

200 - Leonardo T. Rolla 2019
Some stochastic systems are particularly interesting as they exhibit critical behavior without fine-tuning of a parameter, a phenomenon called self-organized criticality. In the context of driven-dissipative steady states, one of the main models is that of Activated Random Walks. Long-range effects intrinsic to the conservative dynamics and lack of a simple algebraic structure cause standard tools and techniques to break down. This makes the mathematical study of this model remarkably challenging. Yet, some exciting progress has been made in the last ten years, with the development of a framework of tools and methods which is finally becoming more structured. In these lecture notes we present the existing results and reproduce the techniques developed so far.
We give the ``quenched scaling limit of Bouchauds trap model in ${dge 2}$. This scaling limit is the fractional-kinetics process, that is the time change of a $d$-dimensional Brownian motion by the inverse of an independent $alpha$-stable subordinator.
In the parking model on $mathbb{Z}^d$, each vertex is initially occupied by a car (with probability $p$) or by a vacant parking spot (with probability $1-p$). Cars perform independent random walks and when they enter a vacant spot, they park there, thereby rendering the spot occupied. Cars visiting occupied spots simply keep driving (continuing their random walk). It is known that $p=1/2$ is a critical value in the sense that the origin is a.s. visited by finitely many distinct cars when $p<1/2$, and by infinitely many distinct cars when $pgeq 1/2$. Furthermore, any given car a.s. eventually parks for $p leq 1/2$ and with positive probability does not park for $p > 1/2$. We study the subcritical phase and prove that the tail of the parking time $tau$ of the car initially at the origin obeys the bounds [ expleft( - C_1 t^{frac{d}{d+2}}right) leq mathbb{P}_p(tau > t) leq expleft( - c_2 t^{frac{d}{d+2}}right) ] for $p>0$ sufficiently small. For $d=1$, we prove these inequalities for all $p in [0,1/2)$. This result presents an asymmetry with the supercritical phase ($p>1/2$), where methods of Bramson--Lebowitz imply that for $d=1$ the corresponding tail of the parking time of the parking spot of the origin decays like $e^{-csqrt{t}}$. Our exponent $d/(d+2)$ also differs from those previously obtained in the case of moving obstacles.
A version of the Schelling model on $mathbb{Z}$ is defined, where two types of agents are allocated on the sites. An agent prefers to be surrounded by other agents of its own type, and may choose to move if this is not the case. It then sends a request to an agent of opposite type chosen according to some given moving distribution and, if the move is beneficial for both agents, they swap location. We show that certain choices in the dynamics are crucial for the properties of the model. In particular, the model exhibits different asymptotic behavior depending on whether the moving distribution has bounded or unbounded support. Furthermore, the behavior changes if the agents are lazy in the sense that they only swap location if this strictly improves their situation. Generalizations to a version that includes multiple types are discussed. The work provides a rigorous analysis of so called Kawasaki dynamics on an infinite structure with local interactions.
We investigate the percolation phase transition for level sets of the Gaussian free field on $mathbb{Z}^d$, with $dgeqslant 3$, and prove that the corresponding critical parameter $h_*(d)$ is strictly positive for all $dgeqslant3$, thus settling an open question from arXiv:1202.5172. In particular, this implies that the sign clusters of the Gaussian free field percolate on $mathbb{Z}^d$, for all $dgeqslant 3$. Among other things, our construction of an infinite cluster above small, but positive level $h$ involves random interlacements at level $u>0$, a random subset of $mathbb{Z}^d$ with desirable percolative properties, introduced in arXiv:0704.2560 in a rather different context, a certain Dynkin-type isomorphism theorem relating random interlacements to the Gaussian free field, see arXiv:1111.4818, and a recent coupling from arXiv:1402.0298 of these two objects, lifted to a continuous metric graph structure over $mathbb{Z}^d$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا