Do you want to publish a course? Click here

Epitaxial Synthesis of Blue Phosphorene

76   0   0.0 ( 0 )
 Added by Hamid Oughaddou
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phosphorene is a new two-dimensional material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct band gap and high carrier mobility values, which make it suitable for a large variety of optical and electronic devices. However, the synthesis of single-layer phosphorene is a major challenge. The standard procedure to obtain phosphorene is by exfoliation. More recently, the epitaxial growth of single-layer phosphorene on Au(111) has been investigated by molecular beam epitaxy and the obtained structure has been described as a blue-phosphorene sheet. In the present study, large areas of high-quality monolayer phosphorene, with a band gap value at least equal to 0.8 eV, have been synthesized on Au(111). Our experimental investigations, coupled with DFT calculations, give evidence of two distinct phases of blue phosphorene on Au(111), instead of one as previously reported, and their atomic structures have been determined.

rate research

Read More

Phosphorene, a two-dimensional (2D) monolayer of black phosphorus, has attracted considerable theoretical interest, although the experimental realization of monolayer, bilayer, and few-layer flakes has been a significant challenge. Here we systematically survey conditions for liquid exfoliation to achieve the first large-scale production of monolayer, bilayer, and few-layer phosphorus, with exfoliation demonstrated at the 10-gram scale. We describe a rapid approach for quantifying the thickness of 2D phosphorus and show that monolayer and few-layer flakes produced by our approach are crystalline and unoxidized, while air exposure leads to rapid oxidation and the production of acid. With large quantities of 2D phosphorus now available, we perform the first quantitative measurements of the materials absorption edge-which is nearly identical to the materials band gap under our experimental conditions-as a function of flake thickness. Our interpretation of the absorbance spectrum relies on an analytical method introduced in this work, allowing the accurate determination of the absorption edge in polydisperse samples of quantum-confined semiconductors. Using this method, we found that the band gap of black phosphorus increased from 0.33 +/- 0.02 eV in bulk to 1.88 +/- 0.24 eV in bilayers, a range that is larger than any other 2D material. In addition, we quantified a higher-energy optical transition (VB-1 to CB), which changes from 2.0 eV in bulk to 3.23 eV in bilayers. This work describes several methods for producing and analyzing 2D phosphorus while also yielding a class of 2D materials with unprecedented optoelectronic properties.
68 - R. Sant , M. Gay , A. Marty 2020
Janus single-layer transition metal dichalcogenides, in which the two chalcogen layers have a different chemical nature, push chemical composition control beyond what is usually achievable with van der Waals heterostructures. Here we report such a novel Janus compound, SPtSe, which is predicted to exhibit strong Rashba spin-orbit coupling. We synthetized it by conversion of a single-layer of PtSe$_2$ on Pt(111) via sulphurization under H$_2$S atmosphere. Our in situ and operando structural analysis with grazing incidence synchrotron X-ray diffraction reveals the process by which the Janus alloy forms. The crystalline long-range order of the as-grown PtSe$_2$ monolayer is first lost due to thermal annealing. A subsequent recrystallization in presence of a source of sulphur yields a highly ordered SPtSe alloy, which is iso-structural to the pristine PtSe$_2$. The chemical composition is resolved, layer-by-layer, using angle-resolved X-ray photoelectron spectroscopy, demonstrating that Se-by-S substitution occurs selectively in the topmost chalcogen layer.
Phosphorene, a single layer of black phosphorous (BLK-P), has a significant potential for flexible and tunable electronics, but attempts to grow it epitaxially have been unsuccessful to date. Meanwhile, hexagonal blue phoshorous (BL-P) has been achieved on closed-packed (111) metal surfaces in special growth conditions of high vapor pressure and high reactivity of phosphorous. The (111) surfaces favors BL-P over BLK-P due to its hexagonal symmetry. Here, we investigate computationally the alternative offered by stepped substrates. Using the Cu(311) surface as a model, we find that surface steps can favor energetically BLK-P over BL-P. This can be rationalized in terms of surface density of states and orbital hybridization, which lead to a stronger surface bonding of the lower BLK-P half-layer. This work suggests that vicinal metal surfaces of metals can offer a viable path towards phosphorene synthesis.
Based on first-principles calculation using density functional theory, we study the vibrational properties and thermal expansion of mono-atomic two-dimensional honeycomb lattices: graphene, silicene, germanene and blue phosphorene. We focus on the similarities and differences of their properties, and try to understand them from their lattice structures. We illustrate that, from graphene to blue phosphorene, phonon bandgap develops due to large buckling-induced mixing of the in-plane and out-of-plane phonon modes. This mixing also influences their thermal properties. Using quasi-harmonic approximation, we find that all of them show negative thermal expansion at room temperature.
As a viable candidate for an all-carbon post-CMOS electronics revolution, epitaxial graphene has attracted significant attention. To realize its application potential, reliable methods for fabricating large-area single-crystalline graphene domains are required. A new way to synthesize high quality epitaxial graphene, namely face-to-face method, has been reported in this paper. The structure and morphologies of the samples are characterized by low-energy electron diffraction, atomic force microscopy, angle-resolved photoemission spectroscopy and Raman spectroscopy. The grown samples show better quality and larger length scales than samples grown through conventional thermal desorption. Moreover the graphene thickness can be easily controlled by changing annealing temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا