Do you want to publish a course? Click here

Vicinal metal surfaces as potential catalysts for phosphorene epitaxial growth

226   0   0.0 ( 0 )
 Added by Daniel Hashemi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Phosphorene, a single layer of black phosphorous (BLK-P), has a significant potential for flexible and tunable electronics, but attempts to grow it epitaxially have been unsuccessful to date. Meanwhile, hexagonal blue phoshorous (BL-P) has been achieved on closed-packed (111) metal surfaces in special growth conditions of high vapor pressure and high reactivity of phosphorous. The (111) surfaces favors BL-P over BLK-P due to its hexagonal symmetry. Here, we investigate computationally the alternative offered by stepped substrates. Using the Cu(311) surface as a model, we find that surface steps can favor energetically BLK-P over BL-P. This can be rationalized in terms of surface density of states and orbital hybridization, which lead to a stronger surface bonding of the lower BLK-P half-layer. This work suggests that vicinal metal surfaces of metals can offer a viable path towards phosphorene synthesis.



rate research

Read More

Phosphorene has been attracted intense interest due to its unexpected high carrier mobility and distinguished anisotropic optoelectronic and electronic properties. In this work, we unraveled strain engineered phosphorene as a photocatalyst in the application of water splitting hydrogen production based on density functional theory calculations. Lattice dynamic calculations demonstrated the stability for such kind of artificial materials under different strains. The phosphorene lattice is unstable under compression strains and could be crashed. Whereas, phosphorene lattice shows very good stability under tensile strains. Further guarantee of the stability of phosphorene in liquid water is studied by ab initio molecular dynamics simulations. Tunable band gap from 1.54 eV at ambient condition to 1.82 eV under tensile strains for phosphorene is evaluated using parameter-free hybrid functional calculations. Appropriate band gaps and band edge alignments at certain pH demonstrate the potential application of phosphorene as a sufficiently efficient photocatalyst for visible light water splitting. We found that the strained phosphorene exhibits significantly improved photocatalytic properties under visible-light irradiation by calculating optical absorption spectra. Negative splitting energy of absorbed H2O indicates the water splitting on phosphorene is energy favorable both without and with strains.
Phosphorene is a new two-dimensional material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct band gap and high carrier mobility values, which make it suitable for a large variety of optical and electronic devices. However, the synthesis of single-layer phosphorene is a major challenge. The standard procedure to obtain phosphorene is by exfoliation. More recently, the epitaxial growth of single-layer phosphorene on Au(111) has been investigated by molecular beam epitaxy and the obtained structure has been described as a blue-phosphorene sheet. In the present study, large areas of high-quality monolayer phosphorene, with a band gap value at least equal to 0.8 eV, have been synthesized on Au(111). Our experimental investigations, coupled with DFT calculations, give evidence of two distinct phases of blue phosphorene on Au(111), instead of one as previously reported, and their atomic structures have been determined.
The structural and electronic properties of hexagonal boron nitride (hBN) grown on stepped Ni surfaces are systematically investigated using a cylindrical Ni crystal as a tunable substrate. Our experiments reveal homogeneous hBN monolayer coating of the entire Ni curved surface, which in turn undergoes an overall faceting. The faceted system is defined by step-free hBN/Ni(111) terraces alternating with strongly tilted hBN/Ni(115) or hBN/Ni(110) nanostripes, depending on whether we have A-type or B-type vicinal surfaces, respectively. Such deep substrate self-organization is explained by both the rigidity of the hBN lattice and the lack of registry with Ni crystal planes in the vicinity of the (111) surface. The analysis of the electronic properties by photoemission and absorption spectroscopies reveal a weaker hBN/Ni interaction in (110)- and (115)-oriented facets, as well as an upward shift of the valence band with respect to the band position at the hBN/Ni(111) terrace.
The energetics of vicinal SrTiO$_3$(001) and DyScO$_3$(110), prototypical perovskite vicinal surfaces, has been studied using topographic atomic force microscopy imaging. The kink formation and strain relaxation energies are extracted from a statistical analysis of the step meandering. Both perovskite surfaces have very similar kink formation energies and exhibit a similar triangular step undulation. Our experiments suggest that the energetics of perovskite oxide surfaces is mainly governed by the local oxygen coordination.
Here we present a novel approach to control magnetic interactions in atomic-scale nanowires. Our ab initio calculations demonstrate the possibility to tune magnetic properties of Fe nanowires formed on vicinal Cu surfaces. Both intrawire and interwire magnetic exchange parameters are extracted from DFT calculations. This study suggests that the effective interwire magnetic exchange parameters exhibit Ruderman--Kittel--Kasuya--Yosida-like (RKKY) oscillations as a function of Fe interwire separation. The choice of vicinal Cu surface offers possibilities for controlling the magnetic coupling. Furthermore, an anisotropic Heisenberg model was used in Monte Carlo simulations to examine the stability of these magnetic configurations at finite temperature. The predicted critical temperatures of the Fe nanowires on Cu(422) and Cu(533) surfaces are well-above room temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا