No Arabic abstract
The electrical Hall effect is the production of a transverse voltage under an out-of-plane magnetic field. Historically, studies of the Hall effect have led to major breakthroughs including the discoveries of Berry curvature and the topological Chern invariants. In magnets, the internal magnetization allows Hall conductivity in the absence of external magnetic field. This anomalous Hall effect (AHE) has become an important tool to study quantum magnets. In nonmagnetic materials without external magnetic fields, the electrical Hall effect is rarely explored because of the constraint by time-reversal symmetry. However, strictly speaking, only the Hall effect in the linear response regime, i.e., the Hall voltage linearly proportional to the external electric field, identically vanishes due to time-reversal symmetry. The Hall effect in the nonlinear response regime, on the other hand, may not be subject to such symmetry constraints. Here, we report the observation of the nonlinear Hall effect (NLHE) in the electrical transport of the nonmagnetic 2D quantum material, bilayer WTe2. Specifically, flowing an electrical current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of magnetic field. The NLHE exhibits unusual properties sharply distinct from the AHE in metals: The NLHE shows a quadratic I-V characteristic; It strongly dominates the nonlinear longitudinal response, leading to a Hall angle of about 90 degree. We further show that the NLHE directly measures the dipole moment of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new Hall effect and provide a powerful methodology to detect Berry curvature in a wide range of nonmagnetic quantum materials in an energy-resolved way.
The Hall effect occurs only in systems with broken time-reversal symmetry, such as solids under an external magnetic field in the ordinary Hall effect and magnetic materials in the anomalous Hall effect (AHE). Here we show a new Hall effect in a nonmagnetic material under zero magnetic field, in which the Hall voltage depends quadratically on the longitudinal current. We observe the effect (referred to as nonlinear AHE) in two-dimensional Td-WTe2, a semimetal with broken inversion symmetry and only one mirror line in the crystal plane. Our angle-resolved electrical measurements reveal that the Hall voltage changes sign when the bias current reverses direction; it maximizes (vanishes) when the bias current is perpendicular (parallel) to the mirror line. The observed effect can be understood as an AHE induced by the bias current which generates an out-of-plane magnetization. The temperature dependence of the Hall conductivity further suggests that both intrinsic Berry curvature dipole and extrinsic spin-dependent scatterings contribute to the observed nonlinear AHE. Our results open the possibility of exploring the intrinsic Berry curvature effect in nonlinear electrical transport in solids .
An intriguing property of three-dimensional (3D) topological insulator (TI) is the existence of surface states with spin-momentum locking, which offers a new frontier of exploration in spintronics. Here, we report the observation of a new type of Hall effect in a 3D TI Bi2Se3 film. The Hall resistance scales linearly with both the applied electric and magnetic fields and exhibits a {pi}/2 angle offset with respect to its longitudinal counterpart, in contrast to the usual angle offset of {pi}/4 between the linear planar Hall effect and the anisotropic magnetoresistance. This novel nonlinear planar Hall effect originates from the conversion of a nonlinear transverse spin current to a charge current due to the concerted actions of spin-momentum locking and time reversal symmetry breaking, which also exists in a wide class of non-centrosymmetric materials with a large span of magnitude. It provides a new way to characterize and utilize the nonlinear spin-to-charge conversion in a variety of topological quantum materials.
The nonlinear Hall effect is an unconventional response, in which a voltage can be driven by two perpendicular currents in the Hall-bar measurement. Unprecedented in the family of the Hall effects, it can survive time-reversal symmetry but is sensitive to the breaking of discrete and crystal symmetries. It is a quantum transport phenomenon that has deep connection with the Berry curvature. However, a full quantum description is still absent. Here we construct a quantum theory of the nonlinear Hall effect by using the diagrammatic technique. Quite different from nonlinear optics, nearly all the diagrams account for the disorder effects, which play decisive role in the electronic transport. After including the disorder contributions in terms of the Feynman diagrams, the total nonlinear Hall conductivity is enhanced but its sign remains unchanged for the 2D tilted Dirac model, compared to the one with only the Berry curvature contribution. We discuss the symmetry of the nonlinear conductivity tensor and predict a pure disorder-induced nonlinear Hall effect for point groups $C_{3}$, $C_{3h}$, $C_{3v}$, $D_{3h}$, $D_{3}$ in 2D, and $T$, $T_{d}$, $C_{3h}$, $D_{3h}$ in 3D. This work will be helpful for explorations of the topological physics beyond the linear regime.
We investigate hybrid structures based on a bilayer quantum spin Hall system in proximity to an s-wave superconductor as a platform to mimic time-reversal symmetric topological superconductors. In this bilayer setup, the induced pairing can be of intra- or inter-layer type, and domain walls of those different types of pairing potentials host Kramers partners (time-reversal conjugate pairs) of Majorana bound states. Interestingly, we discover that such topological interfaces providing Majorana bound states can also be achieved in an otherwise homogeneous system by a spatially dependent inter-layer gate voltage. This gate voltage causes the relative electron densities of the two layers to vary accordingly which suppresses the inter-layer pairing in regions with strong gate voltage. We identify particular transport signatures (zero-bias anomalies) in a five-terminal setup that are uniquely related to the presence of Kramers pairs of Majorana bound states.
We numerically investigate nonlinear Hall transport properties in a four-terminal system with time-reversal symmetry and broken inversion symmetry. Within the nonequilibrium Greens function formalism, the second-order nonlinear conductances are derived, where the internal Coulomb potential in response to external voltages is explicitly included to guarantee the gauge invariance. For the system with a single mirror symmetry $mathcal{M}_{x}$, nonlinear Hall properties are only observable in the $y$ direction and contributed solely from the second-order nonlinear effect. In addition to the intrinsic nonlinear Hall effect originated from nonzero Berry curvature dipole, it is found that the internal Coulomb potential has the same symmetry of the four-terminal system, which gives rise to an extra nonlinear Hall response. Furthermore, the phase relaxation mechanism modeled by virtual probes leads to additional dephasing-induced nonlinear Hall effect.