Do you want to publish a course? Click here

Nonlinear Hall effect induced by internal Coulomb interaction and phase relaxation process in a four-terminal system with time-reversal symmetry

144   0   0.0 ( 0 )
 Added by Fuming Xu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We numerically investigate nonlinear Hall transport properties in a four-terminal system with time-reversal symmetry and broken inversion symmetry. Within the nonequilibrium Greens function formalism, the second-order nonlinear conductances are derived, where the internal Coulomb potential in response to external voltages is explicitly included to guarantee the gauge invariance. For the system with a single mirror symmetry $mathcal{M}_{x}$, nonlinear Hall properties are only observable in the $y$ direction and contributed solely from the second-order nonlinear effect. In addition to the intrinsic nonlinear Hall effect originated from nonzero Berry curvature dipole, it is found that the internal Coulomb potential has the same symmetry of the four-terminal system, which gives rise to an extra nonlinear Hall response. Furthermore, the phase relaxation mechanism modeled by virtual probes leads to additional dephasing-induced nonlinear Hall effect.



rate research

Read More

The electrical Hall effect is the production of a transverse voltage under an out-of-plane magnetic field. Historically, studies of the Hall effect have led to major breakthroughs including the discoveries of Berry curvature and the topological Chern invariants. In magnets, the internal magnetization allows Hall conductivity in the absence of external magnetic field. This anomalous Hall effect (AHE) has become an important tool to study quantum magnets. In nonmagnetic materials without external magnetic fields, the electrical Hall effect is rarely explored because of the constraint by time-reversal symmetry. However, strictly speaking, only the Hall effect in the linear response regime, i.e., the Hall voltage linearly proportional to the external electric field, identically vanishes due to time-reversal symmetry. The Hall effect in the nonlinear response regime, on the other hand, may not be subject to such symmetry constraints. Here, we report the observation of the nonlinear Hall effect (NLHE) in the electrical transport of the nonmagnetic 2D quantum material, bilayer WTe2. Specifically, flowing an electrical current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of magnetic field. The NLHE exhibits unusual properties sharply distinct from the AHE in metals: The NLHE shows a quadratic I-V characteristic; It strongly dominates the nonlinear longitudinal response, leading to a Hall angle of about 90 degree. We further show that the NLHE directly measures the dipole moment of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new Hall effect and provide a powerful methodology to detect Berry curvature in a wide range of nonmagnetic quantum materials in an energy-resolved way.
Time-reversal (T) symmetry breaking is a fundamental physics concept underpinning a broad science and technology area, including topological magnets, axion physics, dissipationless Hall currents, or spintronic memories. A best known conventional model of macroscopic T-symmetry breaking is a ferromagnetic order of itinerant Bloch electrons with an isotropic spin interaction in momentum space. Anisotropic electron interactions, on the other hand, have been a domain of correlated quantum phases, such as the T-invariant nematics or unconventional superconductors. Here we report discovery of a broken-T phase of itinerant Bloch electrons with an unconventional anisotropic spin-momentum interaction, whose staggered nature leads to the formation of two ferromagnetic-like valleys in the momentum space with opposite spin splittings. We describe qualitatively the effect by deriving a non-relativistic single-particle Hamiltonian model. Next, we identify the unconventional staggered spin-momentum interaction by first-principles electronic structure calculations in a four-sublattice antiferromagnet Mn5Si3 with a collinear checkerboard magnetic order. We show that the staggered spin-momentum interaction is set by nonrelativistic spin-symmetries which were previously omitted in relativistic physics classifications of spin interactions and topological quasiparticles. Our measurements of a spontaneous Hall effect in epilayers of antiferromagnetic Mn5Si3 with vanishing magnetization are consistent with our theory predictions. Bloch electrons with the unconventional staggered spin interaction, compatible with abundant low atomic-number materials, strong spin-coherence, and collinear antiferromagnetic order open unparalleled possibilities for realizing T-symmetry broken spin and topological quantum phases.
105 - Huichao Li , L. Sheng , R. Shen 2013
The quantum spin Hall (QSH) effect is known to be unstable to perturbations violating time-reversal symmetry. We show that creating a narrow ferromagnetic (FM) region near the edge of a QSH sample can push one of the counterpropagating edge states to the inner boundary of the FM region, and leave the other at the outer boundary, without changing their spin polarizations and propagation directions. Since the two edge states are spatially separated into different lanes, the QSH effect becomes robust against symmetry-breaking perturbations.
We have experimentally studied the spin-induced time reversal symmetry (TRS) breaking as a function of the relative strength of the Zeeman energy (E_Z) and the Rashba spin-orbit interaction energy (E_SOI), in InGaAs-based 2D electron gases. We find that the TRS breaking saturates when E_Z becomes comparable to E_SOI. Moreover, we show that the spin-induced TRS breaking mechanism is a universal function of the ratio E_Z/E_SOI, within the experimental accuracy.
We show that the Coulomb interaction between two circuits separated by an insulating layer leads to unconventional thermoelectric effects, such as the cooling by thermal current effect, the transverse thermoelectric effect and Maxwells demon effect. The first refers to cooling in one circuit induced by the thermal current in the other circuit. The middle represents electric power generation in one circuit by the temperature gradient in the other circuit. The physical picture of Coulomb drag between the two circuits is first demonstrated for the case with one quantum dot in each circuits and then elaborated for the case with two quantum dots in each circuits. In the latter case, the heat exchange between the two circuits can vanish. Last, we also show that the Maxwells demon effect can be realized in the four-terminal quantum dot thermoelectric system, in which the quantum system absorbs the heat from the high-temperature heat bath and releases the same heat to the low-temperature heat bath without any energy exchange with the two heat baths. Our study reveals the role of Coulomb interaction in non-local four-terminal thermoelectric transport.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا